feat(商务大数据分析): 添加新课程的示例代码和数据- 新增 aqi.csv 数据文件,包含 2020年空气质量数据
- 添加商品销售数据处理和可视化示例代码- 添加房价数据处理和可视化示
This commit is contained in:
parent
b4ef64314b
commit
265128110d
272
商务大数据分析/20250507/lessom/data/aqi.csv
Executable file
272
商务大数据分析/20250507/lessom/data/aqi.csv
Executable file
@ -0,0 +1,272 @@
|
|||||||
|
日期,AQI,质量等级,PM2.5含量(ppm),PM10含量(ppm),SO2含量(ppm),CO含量(ppm),NO2含量(ppm),O3_8h含量(ppm)
|
||||||
|
2020/1/1,79,良,58,64,8,0.7,57,23
|
||||||
|
2020/1/2,112,轻度污染,84,73,10,1.0,71,7
|
||||||
|
2020/1/3,68,良,49,51,7,0.8,49,3
|
||||||
|
2020/1/4,90,良,67,57,7,1.2,53,18
|
||||||
|
2020/1/5,110,轻度污染,83,65,7,1.0,51,46
|
||||||
|
2020/1/6,65,良,47,58,6,1.0,43,6
|
||||||
|
2020/1/7,50,优,18,19,5,1.5,40,43
|
||||||
|
2020/1/8,69,良,50,49,7,0.9,39,45
|
||||||
|
2020/1/9,69,良,50,40,6,0.9,47,33
|
||||||
|
2020/1/10,57,良,34,28,5,0.8,45,21
|
||||||
|
2020/1/11,47,优,27,21,6,0.7,37,39
|
||||||
|
2020/1/12,125,轻度污染,95,74,8,1.0,44,71
|
||||||
|
2020/1/13,148,轻度污染,113,94,9,1.3,59,53
|
||||||
|
2020/1/14,172,中度污染,130,114,12,1.4,62,65
|
||||||
|
2020/1/15,113,轻度污染,85,62,8,1.2,50,32
|
||||||
|
2020/1/16,55,良,16,14,5,0.8,44,38
|
||||||
|
2020/1/17,82,良,60,43,6,0.9,42,25
|
||||||
|
2020/1/18,88,良,65,55,6,0.8,51,31
|
||||||
|
2020/1/19,112,轻度污染,84,77,10,1.0,53,77
|
||||||
|
2020/1/20,127,轻度污染,96,99,14,1.2,70,90
|
||||||
|
2020/1/21,203,重度污染,153,113,9,1.3,43,60
|
||||||
|
2020/1/22,148,轻度污染,113,77,6,1.2,43,30
|
||||||
|
2020/1/23,58,良,41,37,5,0.6,26,42
|
||||||
|
2020/1/24,79,良,58,57,6,0.7,18,78
|
||||||
|
2020/1/25,40,优,26,40,5,0.5,17,61
|
||||||
|
2020/1/26,29,优,20,17,5,0.5,21,56
|
||||||
|
2020/1/27,70,良,51,41,5,0.8,21,57
|
||||||
|
2020/1/28,95,良,71,65,6,0.7,19,70
|
||||||
|
2020/1/29,84,良,62,60,10,0.7,25,77
|
||||||
|
2020/1/30,128,轻度污染,97,85,9,1.0,26,103
|
||||||
|
2020/1/31,125,轻度污染,95,82,10,1.0,43,94
|
||||||
|
2020/2/1,75,良,55,49,7,0.7,21,102
|
||||||
|
2020/2/2,42,优,28,30,8,0.5,26,84
|
||||||
|
2020/2/3,109,轻度污染,82,68,9,0.9,30,109
|
||||||
|
2020/2/4,92,良,68,60,7,0.8,22,103
|
||||||
|
2020/2/5,65,良,47,44,7,0.8,19,106
|
||||||
|
2020/2/6,38,优,22,25,5,0.6,11,75
|
||||||
|
2020/2/7,33,优,14,16,5,0.6,12,66
|
||||||
|
2020/2/8,62,良,44,40,5,0.6,22,45
|
||||||
|
2020/2/9,53,良,37,34,7,0.6,25,79
|
||||||
|
2020/2/10,48,优,33,36,8,0.7,32,69
|
||||||
|
2020/2/11,35,优,24,26,6,0.7,20,47
|
||||||
|
2020/2/12,43,优,30,34,5,0.9,23,56
|
||||||
|
2020/2/13,22,优,15,18,5,0.8,15,30
|
||||||
|
2020/2/14,23,优,14,17,5,0.8,18,32
|
||||||
|
2020/2/15,27,优,8,10,5,0.7,14,53
|
||||||
|
2020/2/16,42,优,21,31,7,0.5,11,83
|
||||||
|
2020/2/17,45,优,19,33,9,0.5,18,90
|
||||||
|
2020/2/18,49,优,27,32,8,0.6,28,97
|
||||||
|
2020/2/19,55,良,39,37,7,0.6,25,76
|
||||||
|
2020/2/20,64,良,46,43,8,0.7,25,111
|
||||||
|
2020/2/21,62,良,44,41,9,0.6,31,66
|
||||||
|
2020/2/22,83,良,61,89,10,0.9,42,94
|
||||||
|
2020/2/23,92,良,68,107,7,0.8,25,109
|
||||||
|
2020/2/24,85,良,63,87,8,1.0,44,84
|
||||||
|
2020/2/25,95,良,71,79,6,1.2,44,42
|
||||||
|
2020/2/26,50,优,35,43,4,0.7,19,87
|
||||||
|
2020/2/27,70,良,51,68,4,0.8,19,93
|
||||||
|
2020/2/28,38,优,26,25,4,0.7,28,59
|
||||||
|
2020/2/29,40,优,28,21,4,0.8,29,41
|
||||||
|
2020/3/1,50,优,35,29,5,0.7,27,58
|
||||||
|
2020/3/2,54,良,38,37,5,0.8,22,87
|
||||||
|
2020/3/3,72,良,52,49,8,1.0,44,64
|
||||||
|
2020/3/4,85,良,63,58,6,0.9,33,104
|
||||||
|
2020/3/5,56,良,31,41,8,0.7,24,107
|
||||||
|
2020/3/6,64,良,46,43,7,0.6,35,84
|
||||||
|
2020/3/7,67,良,48,53,6,0.9,43,75
|
||||||
|
2020/3/8,68,良,49,52,7,0.8,29,105
|
||||||
|
2020/3/9,37,优,19,25,5,0.7,29,47
|
||||||
|
2020/3/10,62,良,44,38,5,1.0,32,74
|
||||||
|
2020/3/11,67,良,48,68,7,1.0,39,113
|
||||||
|
2020/3/12,68,良,49,68,7,0.8,44,95
|
||||||
|
2020/3/13,67,良,48,70,7,0.9,45,46
|
||||||
|
2020/3/14,52,良,24,53,7,0.5,40,96
|
||||||
|
2020/3/15,77,良,38,86,12,0.8,61,109
|
||||||
|
2020/3/16,70,良,51,80,10,0.7,47,108
|
||||||
|
2020/3/17,74,良,43,77,10,0.7,59,122
|
||||||
|
2020/3/18,70,良,46,79,16,1.1,56,123
|
||||||
|
2020/3/19,77,良,35,104,14,0.9,47,78
|
||||||
|
2020/3/20,68,良,37,86,12,0.7,53,112
|
||||||
|
2020/3/21,67,良,42,67,10,0.9,53,87
|
||||||
|
2020/3/22,55,良,31,60,6,0.8,33,102
|
||||||
|
2020/3/23,42,优,19,41,8,0.5,33,83
|
||||||
|
2020/3/24,65,良,26,43,9,0.5,33,118
|
||||||
|
2020/3/25,63,良,30,48,9,0.8,50,66
|
||||||
|
2020/3/26,57,良,27,35,6,0.9,45,24
|
||||||
|
2020/3/27,34,优,12,27,6,0.6,27,62
|
||||||
|
2020/3/28,39,优,11,24,5,0.4,20,78
|
||||||
|
2020/3/29,35,优,22,27,6,0.7,28,57
|
||||||
|
2020/3/30,38,优,26,24,5,0.7,29,60
|
||||||
|
2020/3/31,48,优,28,34,5,0.7,38,40
|
||||||
|
2020/4/1,45,优,23,28,5,0.7,36,90
|
||||||
|
2020/4/2,54,良,30,57,7,0.7,39,101
|
||||||
|
2020/4/3,67,良,45,63,8,0.8,53,109
|
||||||
|
2020/4/4,93,良,60,87,11,1.1,74,125
|
||||||
|
2020/4/5,56,良,20,61,7,0.6,27,94
|
||||||
|
2020/4/6,65,良,31,50,8,0.6,36,117
|
||||||
|
2020/4/7,55,良,30,50,9,0.6,43,105
|
||||||
|
2020/4/8,62,良,29,55,9,0.5,45,114
|
||||||
|
2020/4/9,85,良,42,68,10,0.6,43,142
|
||||||
|
2020/4/10,70,良,43,65,8,0.7,32,124
|
||||||
|
2020/4/11,37,优,23,25,5,0.7,27,73
|
||||||
|
2020/4/12,70,良,31,52,7,0.6,26,123
|
||||||
|
2020/4/13,85,良,39,69,9,0.6,54,141
|
||||||
|
2020/4/14,81,良,42,64,10,0.7,49,137
|
||||||
|
2020/4/15,75,良,30,64,19,1.1,60,116
|
||||||
|
2020/4/16,75,良,33,71,12,0.8,60,111
|
||||||
|
2020/4/17,79,良,53,94,17,0.9,63,75
|
||||||
|
2020/4/18,66,良,47,82,9,0.8,41,112
|
||||||
|
2020/4/19,51,良,19,24,5,0.6,31,101
|
||||||
|
2020/4/20,65,良,25,37,9,0.8,52,110
|
||||||
|
2020/4/21,45,优,23,40,7,0.5,34,89
|
||||||
|
2020/4/22,63,良,29,45,7,0.4,41,115
|
||||||
|
2020/4/23,70,良,40,68,8,0.5,54,124
|
||||||
|
2020/4/24,85,良,30,69,15,0.7,68,130
|
||||||
|
2020/4/25,73,良,26,70,22,1.0,58,120
|
||||||
|
2020/4/26,77,良,36,76,14,0.8,47,132
|
||||||
|
2020/4/27,51,良,25,49,7,0.6,28,101
|
||||||
|
2020/4/28,81,良,25,45,7,0.5,34,137
|
||||||
|
2020/4/29,112,轻度污染,34,69,11,0.6,43,173
|
||||||
|
2020/4/30,90,良,43,80,12,0.8,55,148
|
||||||
|
2020/5/1,54,良,38,53,8,0.9,34,88
|
||||||
|
2020/5/2,80,良,39,60,13,1.2,35,136
|
||||||
|
2020/5/3,90,良,44,72,22,1.5,52,147
|
||||||
|
2020/5/4,132,轻度污染,43,69,18,1.4,40,195
|
||||||
|
2020/5/5,49,优,34,49,6,1.0,36,46
|
||||||
|
2020/5/6,45,优,29,44,5,0.8,29,89
|
||||||
|
2020/5/7,72,良,28,50,6,0.7,24,126
|
||||||
|
2020/5/8,40,优,24,40,6,0.8,26,44
|
||||||
|
2020/5/9,36,优,25,27,5,0.6,21,72
|
||||||
|
2020/5/10,55,良,27,32,6,0.9,43,105
|
||||||
|
2020/5/11,87,良,23,55,8,0.8,44,144
|
||||||
|
2020/5/12,77,良,15,61,12,0.6,46,132
|
||||||
|
2020/5/13,133,轻度污染,31,79,10,0.6,37,196
|
||||||
|
2020/5/14,58,良,35,52,7,0.8,29,109
|
||||||
|
2020/5/15,44,优,18,26,8,0.9,33,87
|
||||||
|
2020/5/16,52,良,22,35,11,1.0,41,100
|
||||||
|
2020/5/17,83,良,24,45,14,1.2,36,139
|
||||||
|
2020/5/18,60,良,19,64,8,0.7,30,112
|
||||||
|
2020/5/19,92,良,29,70,15,0.9,52,150
|
||||||
|
2020/5/20,127,轻度污染,35,71,13,0.7,35,189
|
||||||
|
2020/5/21,105,轻度污染,23,53,10,0.6,23,165
|
||||||
|
2020/5/22,75,良,16,31,6,0.6,16,130
|
||||||
|
2020/5/23,85,良,21,41,7,0.6,23,142
|
||||||
|
2020/5/24,130,轻度污染,39,70,12,0.9,35,193
|
||||||
|
2020/5/25,57,良,40,57,10,0.9,31,103
|
||||||
|
2020/5/26,75,良,26,35,6,0.9,25,129
|
||||||
|
2020/5/27,109,轻度污染,26,49,9,1.0,34,169
|
||||||
|
2020/5/28,99,良,41,66,14,1.2,44,158
|
||||||
|
2020/5/29,51,良,33,51,10,0.7,34,99
|
||||||
|
2020/5/30,46,优,18,25,5,0.6,18,91
|
||||||
|
2020/5/31,80,良,25,49,9,0.9,33,135
|
||||||
|
2020/6/1,116,轻度污染,34,62,7,0.8,31,177
|
||||||
|
2020/6/2,65,良,23,43,9,0.9,34,117
|
||||||
|
2020/6/3,48,优,14,27,7,0.8,24,95
|
||||||
|
2020/6/4,47,优,12,28,8,0.8,22,94
|
||||||
|
2020/6/5,36,优,10,17,5,0.7,25,71
|
||||||
|
2020/6/6,85,良,15,26,6,0.7,19,142
|
||||||
|
2020/6/7,80,良,16,37,7,0.5,17,135
|
||||||
|
2020/6/8,57,良,28,44,7,0.5,14,108
|
||||||
|
2020/6/9,60,良,18,31,6,0.6,15,112
|
||||||
|
2020/6/10,45,优,22,36,7,0.9,36,82
|
||||||
|
2020/6/11,68,良,33,48,6,1.0,36,121
|
||||||
|
2020/6/12,39,优,9,28,6,0.8,27,77
|
||||||
|
2020/6/13,53,良,11,23,6,0.8,35,103
|
||||||
|
2020/6/14,39,优,12,23,6,0.7,27,78
|
||||||
|
2020/6/15,44,优,7,19,6,0.7,35,46
|
||||||
|
2020/6/16,50,优,20,29,5,0.8,22,99
|
||||||
|
2020/6/17,46,优,17,43,7,0.8,26,91
|
||||||
|
2020/6/18,34,优,16,25,5,0.7,23,67
|
||||||
|
2020/6/19,60,良,13,25,6,0.8,28,111
|
||||||
|
2020/6/20,48,优,13,22,6,0.7,19,95
|
||||||
|
2020/6/21,41,优,5,10,5,0.6,20,82
|
||||||
|
2020/6/22,34,优,8,10,5,0.6,20,67
|
||||||
|
2020/6/23,35,优,9,16,5,0.9,28,40
|
||||||
|
2020/6/24,48,优,18,34,8,0.9,34,96
|
||||||
|
2020/6/25,71,良,26,41,8,1.0,28,125
|
||||||
|
2020/6/26,45,优,13,28,6,0.6,18,89
|
||||||
|
2020/6/27,35,优,12,21,5,0.7,28,63
|
||||||
|
2020/6/28,47,优,11,18,5,0.7,14,93
|
||||||
|
2020/6/29,41,优,8,18,6,0.7,19,81
|
||||||
|
2020/6/30,83,良,16,28,6,0.7,26,139
|
||||||
|
2020/7/1,126,轻度污染,33,55,6,0.7,18,188
|
||||||
|
2020/7/2,47,优,18,35,6,0.6,18,94
|
||||||
|
2020/7/3,46,优,10,21,5,0.6,19,91
|
||||||
|
2020/7/4,60,良,20,34,6,0.7,18,112
|
||||||
|
2020/7/5,35,优,11,21,6,0.7,28,45
|
||||||
|
2020/7/6,35,优,8,13,5,0.7,28,46
|
||||||
|
2020/7/7,55,良,14,25,9,1.1,36,105
|
||||||
|
2020/7/8,80,良,29,43,8,1.3,26,136
|
||||||
|
2020/7/9,50,优,22,39,5,0.8,17,99
|
||||||
|
2020/7/10,70,良,19,31,5,0.6,12,124
|
||||||
|
2020/7/11,30,优,13,23,5,0.7,17,59
|
||||||
|
2020/7/12,42,优,15,41,9,0.8,33,64
|
||||||
|
2020/7/13,29,优,11,15,5,0.6,23,58
|
||||||
|
2020/7/14,46,优,14,25,6,0.7,21,91
|
||||||
|
2020/7/15,46,优,7,13,5,0.7,21,91
|
||||||
|
2020/7/16,39,优,7,12,5,0.6,21,78
|
||||||
|
2020/7/17,32,优,15,24,6,0.6,22,63
|
||||||
|
2020/7/18,49,优,18,32,6,0.8,39,20
|
||||||
|
2020/7/19,37,优,13,19,6,1.0,29,67
|
||||||
|
2020/7/20,49,优,21,30,7,0.7,25,98
|
||||||
|
2020/7/21,48,优,20,32,6,0.7,26,96
|
||||||
|
2020/7/22,55,良,14,37,6,0.6,21,105
|
||||||
|
2020/7/23,38,优,10,27,7,0.6,22,76
|
||||||
|
2020/7/24,44,优,12,19,5,0.7,35,75
|
||||||
|
2020/7/25,58,良,13,31,7,0.7,39,109
|
||||||
|
2020/7/26,70,良,26,44,7,0.7,26,124
|
||||||
|
2020/7/27,53,良,22,39,7,1.1,42,44
|
||||||
|
2020/7/28,33,优,11,23,6,0.7,26,64
|
||||||
|
2020/7/29,56,良,28,48,6,0.9,24,107
|
||||||
|
2020/7/30,81,良,24,45,7,0.9,25,137
|
||||||
|
2020/7/31,50,优,9,33,7,0.5,24,99
|
||||||
|
2020/8/1,99,良,15,33,8,0.6,23,158
|
||||||
|
2020/8/2,65,良,25,47,7,0.9,40,117
|
||||||
|
2020/8/3,55,良,18,38,6,0.7,23,106
|
||||||
|
2020/8/4,48,优,9,30,6,0.6,20,95
|
||||||
|
2020/8/5,60,良,23,51,7,1.0,41,111
|
||||||
|
2020/8/6,36,优,8,27,6,0.7,20,72
|
||||||
|
2020/8/7,36,优,10,27,6,0.6,19,71
|
||||||
|
2020/8/8,37,优,16,36,7,0.6,24,73
|
||||||
|
2020/8/9,35,优,18,33,7,0.8,28,66
|
||||||
|
2020/8/10,30,优,11,20,7,0.8,24,53
|
||||||
|
2020/8/11,44,优,15,27,6,0.7,20,88
|
||||||
|
2020/8/12,27,优,8,23,6,0.6,16,53
|
||||||
|
2020/8/13,40,优,11,26,7,0.7,24,80
|
||||||
|
2020/8/14,46,优,10,28,7,0.6,21,91
|
||||||
|
2020/8/15,75,良,15,34,7,0.6,28,129
|
||||||
|
2020/8/16,96,良,19,43,8,0.8,29,155
|
||||||
|
2020/8/17,91,良,21,45,8,0.7,23,149
|
||||||
|
2020/8/18,77,良,30,55,8,0.5,18,132
|
||||||
|
2020/8/19,77,良,26,49,8,0.6,25,132
|
||||||
|
2020/8/20,130,轻度污染,21,41,8,0.8,30,193
|
||||||
|
2020/8/21,88,良,27,45,8,0.9,28,145
|
||||||
|
2020/8/22,87,良,31,53,7,0.8,22,144
|
||||||
|
2020/8/23,112,轻度污染,35,59,8,0.6,17,173
|
||||||
|
2020/8/24,91,良,33,58,10,0.8,28,149
|
||||||
|
2020/8/25,64,良,24,43,9,0.6,26,116
|
||||||
|
2020/8/26,72,良,26,41,8,0.7,20,126
|
||||||
|
2020/8/27,75,良,15,29,8,0.6,21,129
|
||||||
|
2020/8/28,54,良,26,53,12,0.9,39,104
|
||||||
|
2020/8/29,82,良,28,53,11,1.0,35,138
|
||||||
|
2020/8/30,100,良,24,40,9,0.8,32,160
|
||||||
|
2020/8/31,55,良,23,43,10,0.9,44,87
|
||||||
|
2020/9/1,49,优,20,37,10,0.9,39,78
|
||||||
|
2020/9/2,50,优,21,35,8,0.7,26,99
|
||||||
|
2020/9/3,89,良,24,49,11,0.7,45,146
|
||||||
|
2020/9/4,85,良,24,56,8,0.7,42,141
|
||||||
|
2020/9/5,104,轻度污染,31,62,14,0.8,42,164
|
||||||
|
2020/9/6,116,轻度污染,26,54,10,0.6,38,177
|
||||||
|
2020/9/7,114,轻度污染,34,65,11,0.8,58,175
|
||||||
|
2020/9/8,101,轻度污染,38,81,12,0.9,58,161
|
||||||
|
2020/9/9,86,良,46,82,13,0.9,65,143
|
||||||
|
2020/9/10,69,良,50,73,10,1.0,52,84
|
||||||
|
2020/9/11,75,良,24,43,8,0.9,31,130
|
||||||
|
2020/9/12,72,良,26,46,12,0.9,41,126
|
||||||
|
2020/9/13,67,良,29,48,9,0.8,30,120
|
||||||
|
2020/9/14,89,良,33,53,9,0.8,29,146
|
||||||
|
2020/9/15,38,优,16,24,7,0.8,30,64
|
||||||
|
2020/9/16,52,良,19,27,8,0.8,36,102
|
||||||
|
2020/9/17,49,优,15,22,7,0.7,28,98
|
||||||
|
2020/9/18,43,优,14,20,7,0.5,20,86
|
||||||
|
2020/9/19,70,良,21,36,9,0.7,27,124
|
||||||
|
2020/9/20,90,良,26,44,9,0.7,28,148
|
||||||
|
2020/9/21,50,优,19,37,9,0.6,29,100
|
||||||
|
2020/9/22,55,良,31,36,8,0.7,29,105
|
||||||
|
2020/9/23,46,优,17,33,7,0.7,33,92
|
||||||
|
2020/9/24,60,良,27,51,10,0.7,48,106
|
||||||
|
2020/9/25,62,良,21,47,9,0.7,43,114
|
||||||
|
2020/9/26,74,良,29,53,9,0.7,37,128
|
||||||
|
2020/9/27,60,良,18,41,9,0.6,25,112
|
|
BIN
商务大数据分析/20250507/lessom/data/student_grade.xlsx
Executable file
BIN
商务大数据分析/20250507/lessom/data/student_grade.xlsx
Executable file
Binary file not shown.
8979
商务大数据分析/20250507/lessom/data/商品销售数据.csv
Executable file
8979
商务大数据分析/20250507/lessom/data/商品销售数据.csv
Executable file
File diff suppressed because it is too large
Load Diff
357
商务大数据分析/20250507/lessom/task.ipynb
Normal file
357
商务大数据分析/20250507/lessom/task.ipynb
Normal file
@ -0,0 +1,357 @@
|
|||||||
|
{
|
||||||
|
"cells": [
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"id": "initial_id",
|
||||||
|
"metadata": {
|
||||||
|
"collapsed": true,
|
||||||
|
"ExecuteTime": {
|
||||||
|
"end_time": "2025-05-07T06:54:44.502127Z",
|
||||||
|
"start_time": "2025-05-07T06:54:44.496736Z"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"source": "import pandas as pd",
|
||||||
|
"outputs": [],
|
||||||
|
"execution_count": 19
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"metadata": {
|
||||||
|
"ExecuteTime": {
|
||||||
|
"end_time": "2025-05-07T06:54:44.557639Z",
|
||||||
|
"start_time": "2025-05-07T06:54:44.523063Z"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"cell_type": "code",
|
||||||
|
"source": [
|
||||||
|
"# 读取 Excel 文件中的商品销售数据\n",
|
||||||
|
"file_path = 'data/商品销售数据.csv'\n",
|
||||||
|
"try:\n",
|
||||||
|
" sales_data = pd.read_csv(file_path, encoding='gbk')\n",
|
||||||
|
" print(\"数据读取成功,数据基本信息:\")\n",
|
||||||
|
" sales_data.info()\n",
|
||||||
|
" print(\"数据前几行信息:\")\n",
|
||||||
|
" print(sales_data.head().to_csv(sep='\\t', na_rep='nan'))\n",
|
||||||
|
"except FileNotFoundError:\n",
|
||||||
|
" print(\n",
|
||||||
|
" f\"未找到文件 {file_path},请检查文件路径是否正确。\")"
|
||||||
|
],
|
||||||
|
"id": "e97cde3fb9ef1375",
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"数据读取成功,数据基本信息:\n",
|
||||||
|
"<class 'pandas.core.frame.DataFrame'>\n",
|
||||||
|
"RangeIndex: 8978 entries, 0 to 8977\n",
|
||||||
|
"Data columns (total 11 columns):\n",
|
||||||
|
" # Column Non-Null Count Dtype \n",
|
||||||
|
"--- ------ -------------- ----- \n",
|
||||||
|
" 0 订单号 8978 non-null object \n",
|
||||||
|
" 1 设备ID 8978 non-null object \n",
|
||||||
|
" 2 应付金额 8978 non-null float64\n",
|
||||||
|
" 3 实际金额 8978 non-null float64\n",
|
||||||
|
" 4 商品 8978 non-null object \n",
|
||||||
|
" 5 支付时间 8978 non-null object \n",
|
||||||
|
" 6 地点 8978 non-null object \n",
|
||||||
|
" 7 状态 8978 non-null object \n",
|
||||||
|
" 8 提现 8978 non-null object \n",
|
||||||
|
" 9 大类 8978 non-null object \n",
|
||||||
|
" 10 二级类 8978 non-null object \n",
|
||||||
|
"dtypes: float64(2), object(9)\n",
|
||||||
|
"memory usage: 771.7+ KB\n",
|
||||||
|
"数据前几行信息:\n",
|
||||||
|
"\t订单号\t设备ID\t应付金额\t实际金额\t商品\t支付时间\t地点\t状态\t提现\t大类\t二级类\n",
|
||||||
|
"0\tDD201708167493190200943961687\tE43A6E078A04228\t4.5\t4.5\t250ml燕塘原味酸奶\t2017/6/1 0:01\tC\t已出货未退款\t已提现\t饮料\t乳制品\n",
|
||||||
|
"1\tDD201708167493190206930007675\tE43A6E078A04134\t2.0\t2.0\t145ml旺仔牛奶盒装\t2017/6/1 0:02\tB\t已出货未退款\t已提现\t饮料\t乳制品\n",
|
||||||
|
"2\tDD201708167493190368633848103\tE43A6E078A04172\t1.5\t1.5\t劲仔小鱼(卤香味)\t2017/6/1 0:07\tA\t已出货未退款\t已提现\t非饮料\t肉干/豆制品/蛋\n",
|
||||||
|
"3\tDD201708167493466235023422173\tE43A6E078A04172\t4.5\t4.5\t80g香飘飘椰果奶茶麦香味\t2017/6/1 0:08\tA\t已出货未退款\t已提现\t饮料\t茶饮料\n",
|
||||||
|
"4\tDD20170521150353225D2CC0CD748\tE43A6E078A04172\t3.0\t3.0\t伊利纯牛奶\t2017/6/1 0:08\tA\t已出货未退款\t已提现\t饮料\t乳制品\n",
|
||||||
|
"\n"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"execution_count": 20
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"metadata": {
|
||||||
|
"ExecuteTime": {
|
||||||
|
"end_time": "2025-05-07T06:54:44.578832Z",
|
||||||
|
"start_time": "2025-05-07T06:54:44.573803Z"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"cell_type": "code",
|
||||||
|
"source": [
|
||||||
|
"# 按照二级类别分组并对实际金额列求和\n",
|
||||||
|
"category_sales = sales_data.groupby('二级类')['实际金额'].sum().reset_index()\n",
|
||||||
|
"print(\"各二级类别的销售额:\")\n",
|
||||||
|
"print(category_sales)"
|
||||||
|
],
|
||||||
|
"id": "eb320166a60c9ea2",
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"各二级类别的销售额:\n",
|
||||||
|
" 二级类 实际金额\n",
|
||||||
|
"0 乳制品 5308.5\n",
|
||||||
|
"1 其他 3.2\n",
|
||||||
|
"2 功能饮料 3581.7\n",
|
||||||
|
"3 咖啡 515.0\n",
|
||||||
|
"4 坚果炒货 146.8\n",
|
||||||
|
"5 方便速食 3004.5\n",
|
||||||
|
"6 果冻/龟苓膏 17.0\n",
|
||||||
|
"7 果蔬饮料 891.0\n",
|
||||||
|
"8 植物蛋白 1497.0\n",
|
||||||
|
"9 水 1795.1\n",
|
||||||
|
"10 海味零食 371.8\n",
|
||||||
|
"11 碳酸饮料 2088.4\n",
|
||||||
|
"12 糖果/巧克力 240.7\n",
|
||||||
|
"13 纸巾 84.6\n",
|
||||||
|
"14 肉干/豆制品/蛋 4378.7\n",
|
||||||
|
"15 膨化食品 2799.7\n",
|
||||||
|
"16 茶饮料 4905.0\n",
|
||||||
|
"17 蜜饯/果干 987.9\n",
|
||||||
|
"18 饼干糕点 3837.5\n"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"execution_count": 21
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"metadata": {
|
||||||
|
"ExecuteTime": {
|
||||||
|
"end_time": "2025-05-07T06:54:44.601992Z",
|
||||||
|
"start_time": "2025-05-07T06:54:44.598723Z"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"cell_type": "code",
|
||||||
|
"source": [
|
||||||
|
"# 对求和结果进行降序排序\n",
|
||||||
|
"category_sales = category_sales.sort_values(by='实际金额', ascending=False)\n",
|
||||||
|
"print(\"按销售额降序排序后的二级类别销售额:\")\n",
|
||||||
|
"print(category_sales)"
|
||||||
|
],
|
||||||
|
"id": "50235c92d3bd17c",
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"按销售额降序排序后的二级类别销售额:\n",
|
||||||
|
" 二级类 实际金额\n",
|
||||||
|
"0 乳制品 5308.5\n",
|
||||||
|
"16 茶饮料 4905.0\n",
|
||||||
|
"14 肉干/豆制品/蛋 4378.7\n",
|
||||||
|
"18 饼干糕点 3837.5\n",
|
||||||
|
"2 功能饮料 3581.7\n",
|
||||||
|
"5 方便速食 3004.5\n",
|
||||||
|
"15 膨化食品 2799.7\n",
|
||||||
|
"11 碳酸饮料 2088.4\n",
|
||||||
|
"9 水 1795.1\n",
|
||||||
|
"8 植物蛋白 1497.0\n",
|
||||||
|
"17 蜜饯/果干 987.9\n",
|
||||||
|
"7 果蔬饮料 891.0\n",
|
||||||
|
"3 咖啡 515.0\n",
|
||||||
|
"10 海味零食 371.8\n",
|
||||||
|
"12 糖果/巧克力 240.7\n",
|
||||||
|
"4 坚果炒货 146.8\n",
|
||||||
|
"13 纸巾 84.6\n",
|
||||||
|
"6 果冻/龟苓膏 17.0\n",
|
||||||
|
"1 其他 3.2\n"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"execution_count": 22
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"metadata": {
|
||||||
|
"ExecuteTime": {
|
||||||
|
"end_time": "2025-05-07T06:54:44.616005Z",
|
||||||
|
"start_time": "2025-05-07T06:54:44.612951Z"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"cell_type": "code",
|
||||||
|
"source": [
|
||||||
|
"# 取排名前 5 的商品类别\n",
|
||||||
|
"top_5_category_sales = category_sales.head(5)\n",
|
||||||
|
"print(\"排名前 5 的商品类别销售额:\")\n",
|
||||||
|
"print(top_5_category_sales)"
|
||||||
|
],
|
||||||
|
"id": "be36c041c8eccfe1",
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"排名前 5 的商品类别销售额:\n",
|
||||||
|
" 二级类 实际金额\n",
|
||||||
|
"0 乳制品 5308.5\n",
|
||||||
|
"16 茶饮料 4905.0\n",
|
||||||
|
"14 肉干/豆制品/蛋 4378.7\n",
|
||||||
|
"18 饼干糕点 3837.5\n",
|
||||||
|
"2 功能饮料 3581.7\n"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"execution_count": 23
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"metadata": {
|
||||||
|
"ExecuteTime": {
|
||||||
|
"end_time": "2025-05-07T06:54:44.641057Z",
|
||||||
|
"start_time": "2025-05-07T06:54:44.636193Z"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"cell_type": "code",
|
||||||
|
"source": [
|
||||||
|
"# 统计商品销售数量\n",
|
||||||
|
"product_sales_quantity = sales_data.groupby('商品')['商品'].count().reset_index(name='销售数量')\n",
|
||||||
|
"print(\"各商品的销售数量:\")\n",
|
||||||
|
"print(product_sales_quantity)"
|
||||||
|
],
|
||||||
|
"id": "fc85a9c33d529237",
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"各商品的销售数量:\n",
|
||||||
|
" 商品 销售数量\n",
|
||||||
|
"0 100g*5瓶益力多 26\n",
|
||||||
|
"1 100g卫龙点心面黑椒牛排味 3\n",
|
||||||
|
"2 100g果王咸柑桔罐装 13\n",
|
||||||
|
"3 103g康师傅红烧牛肉面 8\n",
|
||||||
|
"4 107g出前一丁桶面酱香牛肉王 6\n",
|
||||||
|
".. ... ...\n",
|
||||||
|
"249 顺宝九制梅 6\n",
|
||||||
|
"250 香脆肠 22\n",
|
||||||
|
"251 香豆干 63\n",
|
||||||
|
"252 鸡爪 7\n",
|
||||||
|
"253 鸭翅 112\n",
|
||||||
|
"\n",
|
||||||
|
"[254 rows x 2 columns]\n"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"execution_count": 24
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"metadata": {
|
||||||
|
"ExecuteTime": {
|
||||||
|
"end_time": "2025-05-07T06:54:44.656687Z",
|
||||||
|
"start_time": "2025-05-07T06:54:44.651375Z"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"cell_type": "code",
|
||||||
|
"source": [
|
||||||
|
"from pyecharts import options as opts\n",
|
||||||
|
"from pyecharts.charts import Funnel\n",
|
||||||
|
"\n",
|
||||||
|
"# 提取排名前 5 的商品类别和对应的销售额\n",
|
||||||
|
"categories = top_5_category_sales['二级类'].tolist()\n",
|
||||||
|
"sales = top_5_category_sales[\n",
|
||||||
|
" '实际金额'].tolist()\n",
|
||||||
|
"# 创建漏斗图对象\n",
|
||||||
|
"funnel = (Funnel().add(\"商品类别销售额\",\n",
|
||||||
|
" [list(z) for z in zip(categories, sales)],\n",
|
||||||
|
" label_opts=opts.LabelOpts(position=\"inside\")).set_global_opts(\n",
|
||||||
|
" title_opts=opts.TitleOpts(title=\"排名前 5 的商品类别销售额漏斗图\"),\n",
|
||||||
|
" toolbox_opts=opts.ToolboxOpts(is_show=True)))\n",
|
||||||
|
"# 渲染图表\n",
|
||||||
|
"funnel.render(\"./top_5_category_sales_funnel.html\")"
|
||||||
|
],
|
||||||
|
"id": "a4aa162f159b79ac",
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"data": {
|
||||||
|
"text/plain": [
|
||||||
|
"'/Volumes/Data/04CodeData/gcc-project-py-25-2/商务大数据分析/20250507/top_5_category_sales_funnel.html'"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
"execution_count": 25,
|
||||||
|
"metadata": {},
|
||||||
|
"output_type": "execute_result"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"execution_count": 25
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"metadata": {
|
||||||
|
"ExecuteTime": {
|
||||||
|
"end_time": "2025-05-07T06:54:44.685357Z",
|
||||||
|
"start_time": "2025-05-07T06:54:44.675073Z"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"cell_type": "code",
|
||||||
|
"source": [
|
||||||
|
"from pyecharts import options as opts\n",
|
||||||
|
"from pyecharts.charts import WordCloud\n",
|
||||||
|
"\n",
|
||||||
|
"# 提取商品名称和对应的销售数量\n",
|
||||||
|
"products = product_sales_quantity['商品'].tolist()\n",
|
||||||
|
"quantities = product_sales_quantity[\n",
|
||||||
|
" '销售数量'].tolist()\n",
|
||||||
|
"# 组合商品名称和销售数量\n",
|
||||||
|
"data = [list(z) for z in zip(products, quantities)]\n",
|
||||||
|
"# 创建词云图对象\n",
|
||||||
|
"wordcloud = (WordCloud().add(\"\",\n",
|
||||||
|
" data,\n",
|
||||||
|
" word_size_range=[20, 100]).set_global_opts(\n",
|
||||||
|
" title_opts=opts.TitleOpts(title=\"商品销售数量词云图\"),\n",
|
||||||
|
" toolbox_opts=opts.ToolboxOpts(is_show=True)))\n",
|
||||||
|
"# 渲染词云图\n",
|
||||||
|
"wordcloud.render(\"./product_sales_wordcloud.html\")"
|
||||||
|
],
|
||||||
|
"id": "95347caf8be5b12a",
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"data": {
|
||||||
|
"text/plain": [
|
||||||
|
"'/Volumes/Data/04CodeData/gcc-project-py-25-2/商务大数据分析/20250507/product_sales_wordcloud.html'"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
"execution_count": 26,
|
||||||
|
"metadata": {},
|
||||||
|
"output_type": "execute_result"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"execution_count": 26
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"metadata": {
|
||||||
|
"ExecuteTime": {
|
||||||
|
"end_time": "2025-05-07T06:54:44.697529Z",
|
||||||
|
"start_time": "2025-05-07T06:54:44.695983Z"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"cell_type": "code",
|
||||||
|
"source": "",
|
||||||
|
"id": "5b4334b07f625e34",
|
||||||
|
"outputs": [],
|
||||||
|
"execution_count": null
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"metadata": {
|
||||||
|
"kernelspec": {
|
||||||
|
"display_name": "Python 3",
|
||||||
|
"language": "python",
|
||||||
|
"name": "python3"
|
||||||
|
},
|
||||||
|
"language_info": {
|
||||||
|
"codemirror_mode": {
|
||||||
|
"name": "ipython",
|
||||||
|
"version": 2
|
||||||
|
},
|
||||||
|
"file_extension": ".py",
|
||||||
|
"mimetype": "text/x-python",
|
||||||
|
"name": "python",
|
||||||
|
"nbconvert_exporter": "python",
|
||||||
|
"pygments_lexer": "ipython2",
|
||||||
|
"version": "2.7.6"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"nbformat": 4,
|
||||||
|
"nbformat_minor": 5
|
||||||
|
}
|
BIN
商务大数据分析/20250507/work/data/house_price.npz
Normal file
BIN
商务大数据分析/20250507/work/data/house_price.npz
Normal file
Binary file not shown.
3409
商务大数据分析/20250507/work/task.ipynb
Normal file
3409
商务大数据分析/20250507/work/task.ipynb
Normal file
File diff suppressed because one or more lines are too long
Loading…
x
Reference in New Issue
Block a user