{
"cells": [
{
"metadata": {},
"cell_type": "markdown",
"source": [
"请读取二手车数据源,完成以下需求,在notebook中运行代码,将完整运行结果导出为pdf上传。\n",
"\n",
"1、车辆价格分布情况\n",
"\n",
"2、车辆销量品牌分布\n",
"\n",
"3、排放标准分析\n",
"\n",
"4、车龄分析\n",
"\n",
"5、里程分析\n",
"\n",
"6、折旧价格分析\n",
"\n",
"7、不同品牌新车平均价格对比\n",
"\n",
"8、排放标准与行驶里程的关系\n",
"\n",
"9、车龄与二手车价格的相关性"
],
"id": "2ce470d74c7f8f38"
},
{
"metadata": {
"ExecuteTime": {
"end_time": "2025-04-18T02:17:28.419400Z",
"start_time": "2025-04-18T02:17:28.417330Z"
}
},
"cell_type": "code",
"source": "import pandas as pd",
"id": "ca151ea5138a6483",
"outputs": [],
"execution_count": 81
},
{
"metadata": {
"ExecuteTime": {
"end_time": "2025-04-18T02:17:28.463954Z",
"start_time": "2025-04-18T02:17:28.440605Z"
}
},
"cell_type": "code",
"source": [
"car = pd.read_csv('./data/second_cars_info.csv',encoding='gbk')\n",
"car.head(5)"
],
"id": "cafa1492fc572672",
"outputs": [
{
"data": {
"text/plain": [
" Brand Name Boarding_time Km Discharge排放标准 \\\n",
"0 奥迪 奥迪A6L 2006款 2.4 CVT 舒适型 2006年8月 9.00万公里 国3 \n",
"1 奥迪 奥迪A6L 2007款 2.4 CVT 舒适型 2007年1月 8.00万公里 国4 \n",
"2 奥迪 奥迪A6L 2004款 2.4L 技术领先型 2005年5月 15.00万公里 国2 \n",
"3 奥迪 奥迪A8L 2013款 45 TFSI quattro舒适型 2013年10月 4.80万公里 欧4 \n",
"4 奥迪 奥迪A6L 2014款 30 FSI 豪华型 2014年9月 0.81万公里 国4,国5 \n",
"\n",
" Sec_price New_price \n",
"0 6.90 50.89万 \n",
"1 8.88 50.89万 \n",
"2 3.82 54.24万 \n",
"3 44.80 101.06万 \n",
"4 33.19 54.99万 "
],
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Brand | \n",
" Name | \n",
" Boarding_time | \n",
" Km | \n",
" Discharge排放标准 | \n",
" Sec_price | \n",
" New_price | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 奥迪 | \n",
" 奥迪A6L 2006款 2.4 CVT 舒适型 | \n",
" 2006年8月 | \n",
" 9.00万公里 | \n",
" 国3 | \n",
" 6.90 | \n",
" 50.89万 | \n",
"
\n",
" \n",
" 1 | \n",
" 奥迪 | \n",
" 奥迪A6L 2007款 2.4 CVT 舒适型 | \n",
" 2007年1月 | \n",
" 8.00万公里 | \n",
" 国4 | \n",
" 8.88 | \n",
" 50.89万 | \n",
"
\n",
" \n",
" 2 | \n",
" 奥迪 | \n",
" 奥迪A6L 2004款 2.4L 技术领先型 | \n",
" 2005年5月 | \n",
" 15.00万公里 | \n",
" 国2 | \n",
" 3.82 | \n",
" 54.24万 | \n",
"
\n",
" \n",
" 3 | \n",
" 奥迪 | \n",
" 奥迪A8L 2013款 45 TFSI quattro舒适型 | \n",
" 2013年10月 | \n",
" 4.80万公里 | \n",
" 欧4 | \n",
" 44.80 | \n",
" 101.06万 | \n",
"
\n",
" \n",
" 4 | \n",
" 奥迪 | \n",
" 奥迪A6L 2014款 30 FSI 豪华型 | \n",
" 2014年9月 | \n",
" 0.81万公里 | \n",
" 国4,国5 | \n",
" 33.19 | \n",
" 54.99万 | \n",
"
\n",
" \n",
"
\n",
"
"
]
},
"execution_count": 82,
"metadata": {},
"output_type": "execute_result"
}
],
"execution_count": 82
},
{
"metadata": {
"ExecuteTime": {
"end_time": "2025-04-18T02:17:28.513253Z",
"start_time": "2025-04-18T02:17:28.491887Z"
}
},
"cell_type": "code",
"source": [
"from decimal import Decimal\n",
"car[\"Km\"] = car[\"Km\"].str.extract(\"(\\d+\\.?\\d+)\",expand = True)\n",
"car[\"New_price\"] = car[\"New_price\"].str.extract(\"(\\d+\\.?\\d+)\",expand = True)\n",
"car[\"New_price\"] = car[\"New_price\"].apply(lambda x : Decimal(x) * 10000)\n",
"# car[\"Sec_price\"] = car[\"Sec_price\"].apply(lambda x : Decimal(str(x)) * 10000)\n",
"# car[\"Km\"] = car[\"Km\"].apply(lambda x : Decimal(str(x)) * 10000)\n",
"car.head(5)"
],
"id": "1094ed7ec64fd6d3",
"outputs": [
{
"data": {
"text/plain": [
" Brand Name Boarding_time Km Discharge排放标准 \\\n",
"0 奥迪 奥迪A6L 2006款 2.4 CVT 舒适型 2006年8月 9.00 国3 \n",
"1 奥迪 奥迪A6L 2007款 2.4 CVT 舒适型 2007年1月 8.00 国4 \n",
"2 奥迪 奥迪A6L 2004款 2.4L 技术领先型 2005年5月 15.00 国2 \n",
"3 奥迪 奥迪A8L 2013款 45 TFSI quattro舒适型 2013年10月 4.80 欧4 \n",
"4 奥迪 奥迪A6L 2014款 30 FSI 豪华型 2014年9月 0.81 国4,国5 \n",
"\n",
" Sec_price New_price \n",
"0 6.90 508900.00 \n",
"1 8.88 508900.00 \n",
"2 3.82 542400.00 \n",
"3 44.80 1010600.00 \n",
"4 33.19 549900.00 "
],
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Brand | \n",
" Name | \n",
" Boarding_time | \n",
" Km | \n",
" Discharge排放标准 | \n",
" Sec_price | \n",
" New_price | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 奥迪 | \n",
" 奥迪A6L 2006款 2.4 CVT 舒适型 | \n",
" 2006年8月 | \n",
" 9.00 | \n",
" 国3 | \n",
" 6.90 | \n",
" 508900.00 | \n",
"
\n",
" \n",
" 1 | \n",
" 奥迪 | \n",
" 奥迪A6L 2007款 2.4 CVT 舒适型 | \n",
" 2007年1月 | \n",
" 8.00 | \n",
" 国4 | \n",
" 8.88 | \n",
" 508900.00 | \n",
"
\n",
" \n",
" 2 | \n",
" 奥迪 | \n",
" 奥迪A6L 2004款 2.4L 技术领先型 | \n",
" 2005年5月 | \n",
" 15.00 | \n",
" 国2 | \n",
" 3.82 | \n",
" 542400.00 | \n",
"
\n",
" \n",
" 3 | \n",
" 奥迪 | \n",
" 奥迪A8L 2013款 45 TFSI quattro舒适型 | \n",
" 2013年10月 | \n",
" 4.80 | \n",
" 欧4 | \n",
" 44.80 | \n",
" 1010600.00 | \n",
"
\n",
" \n",
" 4 | \n",
" 奥迪 | \n",
" 奥迪A6L 2014款 30 FSI 豪华型 | \n",
" 2014年9月 | \n",
" 0.81 | \n",
" 国4,国5 | \n",
" 33.19 | \n",
" 549900.00 | \n",
"
\n",
" \n",
"
\n",
"
"
]
},
"execution_count": 83,
"metadata": {},
"output_type": "execute_result"
}
],
"execution_count": 83
},
{
"metadata": {
"ExecuteTime": {
"end_time": "2025-04-18T02:17:28.568207Z",
"start_time": "2025-04-18T02:17:28.555681Z"
}
},
"cell_type": "code",
"source": [
"car['Boarding_time'] = pd.to_datetime(car['Boarding_time'].str.replace('年', '-').str.replace('月', ''), errors='coerce', format='%Y-%m')\n",
"car.head(3)"
],
"id": "2df80c752148dcd1",
"outputs": [
{
"data": {
"text/plain": [
" Brand Name Boarding_time Km Discharge排放标准 \\\n",
"0 奥迪 奥迪A6L 2006款 2.4 CVT 舒适型 2006-08-01 9.00 国3 \n",
"1 奥迪 奥迪A6L 2007款 2.4 CVT 舒适型 2007-01-01 8.00 国4 \n",
"2 奥迪 奥迪A6L 2004款 2.4L 技术领先型 2005-05-01 15.00 国2 \n",
"\n",
" Sec_price New_price \n",
"0 6.90 508900.00 \n",
"1 8.88 508900.00 \n",
"2 3.82 542400.00 "
],
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Brand | \n",
" Name | \n",
" Boarding_time | \n",
" Km | \n",
" Discharge排放标准 | \n",
" Sec_price | \n",
" New_price | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 奥迪 | \n",
" 奥迪A6L 2006款 2.4 CVT 舒适型 | \n",
" 2006-08-01 | \n",
" 9.00 | \n",
" 国3 | \n",
" 6.90 | \n",
" 508900.00 | \n",
"
\n",
" \n",
" 1 | \n",
" 奥迪 | \n",
" 奥迪A6L 2007款 2.4 CVT 舒适型 | \n",
" 2007-01-01 | \n",
" 8.00 | \n",
" 国4 | \n",
" 8.88 | \n",
" 508900.00 | \n",
"
\n",
" \n",
" 2 | \n",
" 奥迪 | \n",
" 奥迪A6L 2004款 2.4L 技术领先型 | \n",
" 2005-05-01 | \n",
" 15.00 | \n",
" 国2 | \n",
" 3.82 | \n",
" 542400.00 | \n",
"
\n",
" \n",
"
\n",
"
"
]
},
"execution_count": 84,
"metadata": {},
"output_type": "execute_result"
}
],
"execution_count": 84
},
{
"metadata": {
"ExecuteTime": {
"end_time": "2025-04-18T02:17:28.626329Z",
"start_time": "2025-04-18T02:17:28.622360Z"
}
},
"cell_type": "code",
"source": [
"today = pd.Timestamp('today')\n",
"car['Year'] = today.year - car['Boarding_time'].dt.year\n",
"car['Month'] = today.month - car['Boarding_time'].dt.month\n",
"car['Year'] = car['Year'] + car['Month'] / 12"
],
"id": "adb1e9029cf50440",
"outputs": [],
"execution_count": 85
},
{
"metadata": {
"ExecuteTime": {
"end_time": "2025-04-18T02:17:28.693439Z",
"start_time": "2025-04-18T02:17:28.689606Z"
}
},
"cell_type": "code",
"source": [
"# 1、车辆价格分布情况\n",
"car['Sec_price'].describe()"
],
"id": "192ca8d230bba52c",
"outputs": [
{
"data": {
"text/plain": [
"count 11281.000000\n",
"mean 26.897567\n",
"std 55.451814\n",
"min 0.650000\n",
"25% 5.200000\n",
"50% 10.490000\n",
"75% 24.800000\n",
"max 808.000000\n",
"Name: Sec_price, dtype: float64"
]
},
"execution_count": 86,
"metadata": {},
"output_type": "execute_result"
}
],
"execution_count": 86
},
{
"metadata": {
"ExecuteTime": {
"end_time": "2025-04-18T02:17:28.759802Z",
"start_time": "2025-04-18T02:17:28.755785Z"
}
},
"cell_type": "code",
"source": [
"# 2、车辆销量品牌分布\n",
"car['Brand'].value_counts()"
],
"id": "84cd0ac0f5397e98",
"outputs": [
{
"data": {
"text/plain": [
"别克 1350\n",
"大众 991\n",
"奔驰 895\n",
"宝马 773\n",
"奥迪 758\n",
" ... \n",
"东风风光 1\n",
"昌河 1\n",
"北汽制造 1\n",
"北京 1\n",
"中欧房车 1\n",
"Name: Brand, Length: 104, dtype: int64"
]
},
"execution_count": 87,
"metadata": {},
"output_type": "execute_result"
}
],
"execution_count": 87
},
{
"metadata": {
"ExecuteTime": {
"end_time": "2025-04-18T02:17:28.829496Z",
"start_time": "2025-04-18T02:17:28.826138Z"
}
},
"cell_type": "code",
"source": [
"# 3、排放标准分析\n",
"car['Discharge排放标准'].value_counts()"
],
"id": "abfa9e35e2c0e57b",
"outputs": [
{
"data": {
"text/plain": [
"国4 4300\n",
"欧4 1898\n",
"欧5 1201\n",
"国4,国5 848\n",
"国3 798\n",
"国5 683\n",
"欧3 292\n",
"-- 276\n",
"国2 241\n",
"国4,京5 223\n",
"国3,OBD 119\n",
"OBD 90\n",
"国4,OBD 63\n",
"欧4,OBD 62\n",
"OBD,国5 38\n",
"欧6 36\n",
"国4,OBD,国5 31\n",
"国5,京5 22\n",
"欧5,OBD 9\n",
"欧4,欧5 9\n",
"欧5,国4 7\n",
"欧4,国3 7\n",
"国4,OBD,京5 6\n",
"欧4,国4 6\n",
"欧4,国4,OBD 5\n",
"欧3,欧4 2\n",
"欧5,国5 2\n",
"国4,国5,京5 1\n",
"欧1 1\n",
"欧2 1\n",
"京5 1\n",
"国3,国4 1\n",
"欧4,-- 1\n",
"欧5,国4,国5 1\n",
"Name: Discharge排放标准, dtype: int64"
]
},
"execution_count": 88,
"metadata": {},
"output_type": "execute_result"
}
],
"execution_count": 88
},
{
"metadata": {
"ExecuteTime": {
"end_time": "2025-04-18T02:17:28.890889Z",
"start_time": "2025-04-18T02:17:28.886821Z"
}
},
"cell_type": "code",
"source": [
"# 4、车龄分析\n",
"car['Year'].describe()"
],
"id": "93126f910d7182c6",
"outputs": [
{
"data": {
"text/plain": [
"count 11188.000000\n",
"mean 13.123592\n",
"std 2.991405\n",
"min 7.500000\n",
"25% 10.750000\n",
"50% 13.166667\n",
"75% 15.083333\n",
"max 27.333333\n",
"Name: Year, dtype: float64"
]
},
"execution_count": 89,
"metadata": {},
"output_type": "execute_result"
}
],
"execution_count": 89
},
{
"metadata": {
"ExecuteTime": {
"end_time": "2025-04-18T02:17:28.960584Z",
"start_time": "2025-04-18T02:17:28.955583Z"
}
},
"cell_type": "code",
"source": [
"# 5、里程分析\n",
"car['Km'].describe()"
],
"id": "9a5d106b4e15e8a2",
"outputs": [
{
"data": {
"text/plain": [
"count 11184\n",
"unique 968\n",
"top 6.00\n",
"freq 485\n",
"Name: Km, dtype: object"
]
},
"execution_count": 90,
"metadata": {},
"output_type": "execute_result"
}
],
"execution_count": 90
},
{
"metadata": {
"ExecuteTime": {
"end_time": "2025-04-18T02:17:29.031125Z",
"start_time": "2025-04-18T02:17:29.024995Z"
}
},
"cell_type": "code",
"source": [
"# 6、折旧价格分析\n",
"# car = car.dropna(subset=['Km'])\n",
"car[['Km', 'Sec_price']].corr()"
],
"id": "52035886c7842d2f",
"outputs": [
{
"data": {
"text/plain": [
" Sec_price\n",
"Sec_price 1.0"
],
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Sec_price | \n",
"
\n",
" \n",
" \n",
" \n",
" Sec_price | \n",
" 1.0 | \n",
"
\n",
" \n",
"
\n",
"
"
]
},
"execution_count": 91,
"metadata": {},
"output_type": "execute_result"
}
],
"execution_count": 91
},
{
"metadata": {
"ExecuteTime": {
"end_time": "2025-04-18T02:23:06.001261Z",
"start_time": "2025-04-18T02:23:05.987085Z"
}
},
"cell_type": "code",
"source": [
"# 7、不同品牌新车平均价格对比\n",
"car[['Brand', 'New_price']].groupby('Brand').mean()"
],
"id": "568eaf05460ebb68",
"outputs": [
{
"data": {
"text/plain": [
" New_price\n",
"Brand \n",
"DS 2.644188e+05\n",
"GMC 1.423178e+06\n",
"Jeep 4.342455e+05\n",
"MINI 3.076827e+05\n",
"WEY 1.930000e+05\n",
"... ...\n",
"雪佛兰 1.564546e+05\n",
"雪铁龙 1.655019e+05\n",
"雷克萨斯 7.538173e+05\n",
"雷诺 2.770526e+05\n",
"马自达 2.170586e+05\n",
"\n",
"[104 rows x 1 columns]"
],
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" New_price | \n",
"
\n",
" \n",
" Brand | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" DS | \n",
" 2.644188e+05 | \n",
"
\n",
" \n",
" GMC | \n",
" 1.423178e+06 | \n",
"
\n",
" \n",
" Jeep | \n",
" 4.342455e+05 | \n",
"
\n",
" \n",
" MINI | \n",
" 3.076827e+05 | \n",
"
\n",
" \n",
" WEY | \n",
" 1.930000e+05 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 雪佛兰 | \n",
" 1.564546e+05 | \n",
"
\n",
" \n",
" 雪铁龙 | \n",
" 1.655019e+05 | \n",
"
\n",
" \n",
" 雷克萨斯 | \n",
" 7.538173e+05 | \n",
"
\n",
" \n",
" 雷诺 | \n",
" 2.770526e+05 | \n",
"
\n",
" \n",
" 马自达 | \n",
" 2.170586e+05 | \n",
"
\n",
" \n",
"
\n",
"
104 rows × 1 columns
\n",
"
"
]
},
"execution_count": 96,
"metadata": {},
"output_type": "execute_result"
}
],
"execution_count": 96
},
{
"metadata": {
"ExecuteTime": {
"end_time": "2025-04-18T02:25:53.211176Z",
"start_time": "2025-04-18T02:25:53.179478Z"
}
},
"cell_type": "code",
"source": [
"# 8、排放标准与行驶里程的关系\n",
"car['Km'] = pd.to_numeric(car['Km'], errors='coerce')\n",
"car.groupby('Discharge排放标准')['Km'].mean()"
],
"id": "4af30a35353b2754",
"outputs": [
{
"data": {
"text/plain": [
"Discharge排放标准\n",
"-- 6.302677\n",
"OBD 8.320222\n",
"OBD,国5 3.307105\n",
"京5 2.000000\n",
"国2 11.470539\n",
"国3 8.524411\n",
"国3,OBD 7.691681\n",
"国3,国4 5.000000\n",
"国4 7.075801\n",
"国4,OBD 5.169841\n",
"国4,OBD,京5 5.533333\n",
"国4,OBD,国5 4.262258\n",
"国4,京5 4.808879\n",
"国4,国5 4.026185\n",
"国4,国5,京5 3.400000\n",
"国5 2.302224\n",
"国5,京5 3.365455\n",
"欧1 8.000000\n",
"欧2 12.000000\n",
"欧3 9.064828\n",
"欧3,欧4 8.000000\n",
"欧4 6.729597\n",
"欧4,-- 7.500000\n",
"欧4,OBD 5.134426\n",
"欧4,国3 8.914286\n",
"欧4,国4 6.133333\n",
"欧4,国4,OBD 7.460000\n",
"欧4,欧5 4.120000\n",
"欧5 3.364559\n",
"欧5,OBD 4.911111\n",
"欧5,国4 4.382857\n",
"欧5,国4,国5 7.000000\n",
"欧5,国5 0.650000\n",
"欧6 1.073714\n",
"Name: Km, dtype: float64"
]
},
"execution_count": 99,
"metadata": {},
"output_type": "execute_result"
}
],
"execution_count": 99
},
{
"metadata": {
"ExecuteTime": {
"end_time": "2025-04-18T02:26:08.841815Z",
"start_time": "2025-04-18T02:26:08.835149Z"
}
},
"cell_type": "code",
"source": [
"# 9、车龄与二手车价格的相关性\n",
"car[['Year', 'Sec_price']].corr()"
],
"id": "ab1c177ba107b9bc",
"outputs": [
{
"data": {
"text/plain": [
" Year Sec_price\n",
"Year 1.00000 -0.30768\n",
"Sec_price -0.30768 1.00000"
],
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Year | \n",
" Sec_price | \n",
"
\n",
" \n",
" \n",
" \n",
" Year | \n",
" 1.00000 | \n",
" -0.30768 | \n",
"
\n",
" \n",
" Sec_price | \n",
" -0.30768 | \n",
" 1.00000 | \n",
"
\n",
" \n",
"
\n",
"
"
]
},
"execution_count": 100,
"metadata": {},
"output_type": "execute_result"
}
],
"execution_count": 100
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 5
}