{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "initial_id",
"metadata": {
"ExecuteTime": {
"end_time": "2025-04-24T15:56:55.064241Z",
"start_time": "2025-04-24T15:56:55.050975Z"
}
},
"outputs": [],
"source": [
"import matplotlib.pyplot as plt\n",
"import pandas as pd"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "b4c1dd92fcd604ab",
"metadata": {
"ExecuteTime": {
"end_time": "2025-04-24T15:56:55.118268Z",
"start_time": "2025-04-24T15:56:55.114936Z"
}
},
"outputs": [],
"source": [
"# 设置中文字体(macOS 上常见中文字体)\n",
"from matplotlib import font_manager as fm\n",
"import matplotlib as mpl\n",
"font_path = '/System/Library/Fonts/STHeiti Medium.ttc'\n",
"my_font = fm.FontProperties(fname=font_path)\n",
"mpl.rcParams['font.family'] = my_font.get_name()\n",
"mpl.rcParams['axes.unicode_minus'] = False"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "9702bcdccb5855ae",
"metadata": {
"ExecuteTime": {
"end_time": "2025-04-24T15:56:55.195907Z",
"start_time": "2025-04-24T15:56:55.127249Z"
}
},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" 性别 | \n",
" 自我效能感 | \n",
" 考试课程准备情况 | \n",
" 数学成绩 | \n",
" 阅读成绩 | \n",
" 写作成绩 | \n",
" 总成绩 | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 女 | \n",
" 中 | \n",
" 未完成 | \n",
" 72 | \n",
" 72 | \n",
" 74 | \n",
" 218 | \n",
"
\n",
" \n",
" 1 | \n",
" 女 | \n",
" 高 | \n",
" 完成 | \n",
" 69 | \n",
" 90 | \n",
" 88 | \n",
" 247 | \n",
"
\n",
" \n",
" 2 | \n",
" 女 | \n",
" 高 | \n",
" 未完成 | \n",
" 90 | \n",
" 95 | \n",
" 93 | \n",
" 278 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" 性别 自我效能感 考试课程准备情况 数学成绩 阅读成绩 写作成绩 总成绩\n",
"0 女 中 未完成 72 72 74 218\n",
"1 女 高 完成 69 90 88 247\n",
"2 女 高 未完成 90 95 93 278"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data = pd.read_excel('data2/student_grade.xlsx')\n",
"data.head(3)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "4284268d705c4ad8",
"metadata": {
"ExecuteTime": {
"end_time": "2025-04-24T15:56:55.236967Z",
"start_time": "2025-04-24T15:56:55.234833Z"
}
},
"outputs": [],
"source": [
"def level_parse(x):\n",
" if x >= 0 and x < 150:\n",
" return \"不及格\"\n",
" elif x >= 150 and x < 200:\n",
" return \"及格\"\n",
" elif x >= 200 and x < 250:\n",
" return \"良好\"\n",
" else:\n",
" return \"优秀\""
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "39b24ae68a4a33ab",
"metadata": {
"ExecuteTime": {
"end_time": "2025-04-24T15:56:55.282080Z",
"start_time": "2025-04-24T15:56:55.276029Z"
}
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" 性别 | \n",
" 自我效能感 | \n",
" 考试课程准备情况 | \n",
" 数学成绩 | \n",
" 阅读成绩 | \n",
" 写作成绩 | \n",
" 总成绩 | \n",
" level | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 女 | \n",
" 中 | \n",
" 未完成 | \n",
" 72 | \n",
" 72 | \n",
" 74 | \n",
" 218 | \n",
" 良好 | \n",
"
\n",
" \n",
" 1 | \n",
" 女 | \n",
" 高 | \n",
" 完成 | \n",
" 69 | \n",
" 90 | \n",
" 88 | \n",
" 247 | \n",
" 良好 | \n",
"
\n",
" \n",
" 2 | \n",
" 女 | \n",
" 高 | \n",
" 未完成 | \n",
" 90 | \n",
" 95 | \n",
" 93 | \n",
" 278 | \n",
" 优秀 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" 性别 自我效能感 考试课程准备情况 数学成绩 阅读成绩 写作成绩 总成绩 level\n",
"0 女 中 未完成 72 72 74 218 良好\n",
"1 女 高 完成 69 90 88 247 良好\n",
"2 女 高 未完成 90 95 93 278 优秀"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data['level'] = data['总成绩'].apply(lambda x:level_parse(x))\n",
"data.head(3)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "8eff56fce8a9cefb",
"metadata": {
"ExecuteTime": {
"end_time": "2025-04-24T15:56:55.379176Z",
"start_time": "2025-04-24T15:56:55.371050Z"
}
},
"outputs": [
{
"data": {
"text/plain": [
"['良好',\n",
" '良好',\n",
" '优秀',\n",
" '不及格',\n",
" '良好',\n",
" '良好',\n",
" '优秀',\n",
" '不及格',\n",
" '及格',\n",
" '不及格',\n",
" '及格',\n",
" '不及格',\n",
" '良好',\n",
" '良好',\n",
" '及格',\n",
" '良好',\n",
" '优秀',\n",
" '不及格',\n",
" '不及格',\n",
" '及格',\n",
" '及格',\n",
" '良好',\n",
" '及格',\n",
" '良好',\n",
" '良好',\n",
" '良好',\n",
" '及格',\n",
" '良好',\n",
" '良好',\n",
" '良好',\n",
" '良好',\n",
" '及格',\n",
" '及格',\n",
" '不及格',\n",
" '优秀',\n",
" '良好',\n",
" '良好',\n",
" '及格',\n",
" '优秀',\n",
" '及格',\n",
" '及格',\n",
" '及格',\n",
" '及格',\n",
" '及格',\n",
" '及格',\n",
" '及格',\n",
" '及格',\n",
" '良好',\n",
" '良好',\n",
" '良好',\n",
" '及格',\n",
" '良好',\n",
" '不及格',\n",
" '良好',\n",
" '良好',\n",
" '不及格',\n",
" '优秀',\n",
" '及格',\n",
" '及格',\n",
" '不及格',\n",
" '良好',\n",
" '不及格',\n",
" '及格',\n",
" '良好',\n",
" '及格',\n",
" '及格',\n",
" '不及格',\n",
" '良好',\n",
" '及格',\n",
" '及格',\n",
" '及格',\n",
" '及格',\n",
" '不及格',\n",
" '及格',\n",
" '不及格',\n",
" '不及格',\n",
" '不及格',\n",
" '良好',\n",
" '良好',\n",
" '及格',\n",
" '不及格',\n",
" '不及格',\n",
" '及格',\n",
" '及格',\n",
" '不及格',\n",
" '良好',\n",
" '良好',\n",
" '良好',\n",
" '及格',\n",
" '良好',\n",
" '良好',\n",
" '不及格',\n",
" '良好',\n",
" '不及格',\n",
" '优秀',\n",
" '良好',\n",
" '及格',\n",
" '良好',\n",
" '及格',\n",
" '及格',\n",
" '良好',\n",
" '良好',\n",
" '优秀',\n",
" '及格',\n",
" '优秀',\n",
" '及格',\n",
" '优秀',\n",
" '及格',\n",
" '及格',\n",
" '良好',\n",
" '优秀',\n",
" '及格',\n",
" '及格',\n",
" '及格',\n",
" '优秀',\n",
" '良好',\n",
" '良好',\n",
" '良好',\n",
" '及格',\n",
" '及格',\n",
" '优秀',\n",
" '优秀',\n",
" '优秀',\n",
" '及格',\n",
" '良好',\n",
" '优秀',\n",
" '良好',\n",
" '良好',\n",
" '良好',\n",
" '及格',\n",
" '优秀',\n",
" '不及格',\n",
" '良好',\n",
" '良好',\n",
" '良好',\n",
" '及格',\n",
" '不及格',\n",
" '及格',\n",
" '及格',\n",
" '良好',\n",
" '良好',\n",
" '及格',\n",
" '及格',\n",
" '不及格',\n",
" '良好',\n",
" '不及格',\n",
" '良好',\n",
" '良好',\n",
" '良好',\n",
" '优秀',\n",
" '及格',\n",
" '良好',\n",
" '及格',\n",
" '及格',\n",
" '及格',\n",
" '良好',\n",
" '良好',\n",
" '及格',\n",
" '良好',\n",
" '及格',\n",
" '良好',\n",
" '良好',\n",
" '及格',\n",
" '及格',\n",
" '优秀',\n",
" '优秀',\n",
" '及格',\n",
" '良好',\n",
" '良好',\n",
" '良好',\n",
" '良好',\n",
" '优秀',\n",
" '良好',\n",
" '良好',\n",
" '不及格',\n",
" '优秀',\n",
" '及格',\n",
" '良好',\n",
" '及格',\n",
" '优秀',\n",
" '良好',\n",
" '及格',\n",
" '不及格',\n",
" '良好',\n",
" '不及格',\n",
" '及格',\n",
" '良好',\n",
" '及格',\n",
" '不及格',\n",
" '优秀',\n",
" '良好',\n",
" '良好',\n",
" '及格',\n",
" '良好',\n",
" '良好',\n",
" '及格',\n",
" '及格',\n",
" '及格',\n",
" '及格',\n",
" '良好',\n",
" '良好',\n",
" '良好',\n",
" '良好',\n",
" '及格',\n",
" '不及格',\n",
" '良好',\n",
" '良好',\n",
" '良好',\n",
" '良好',\n",
" '及格',\n",
" '良好',\n",
" '不及格',\n",
" '及格',\n",
" '及格',\n",
" '优秀',\n",
" '良好',\n",
" '优秀',\n",
" '不及格',\n",
" '良好',\n",
" '及格',\n",
" '及格',\n",
" '良好',\n",
" '及格',\n",
" '良好',\n",
" '及格',\n",
" '及格',\n",
" '良好',\n",
" '及格',\n",
" '良好',\n",
" '优秀',\n",
" '良好',\n",
" '不及格',\n",
" '良好',\n",
" '优秀',\n",
" '良好',\n",
" '良好',\n",
" '及格',\n",
" '及格',\n",
" '及格',\n",
" '良好',\n",
" '良好',\n",
" '良好',\n",
" '及格',\n",
" '及格',\n",
" '良好',\n",
" '良好',\n",
" '良好',\n",
" '及格',\n",
" '及格',\n",
" '及格',\n",
" '不及格',\n",
" '良好',\n",
" '良好',\n",
" '良好',\n",
" '及格',\n",
" '良好',\n",
" '良好',\n",
" '良好',\n",
" '良好',\n",
" '良好',\n",
" '良好',\n",
" '良好',\n",
" '不及格',\n",
" '优秀',\n",
" '良好',\n",
" '不及格',\n",
" '良好',\n",
" '良好',\n",
" '优秀',\n",
" '良好',\n",
" '及格',\n",
" '不及格',\n",
" '及格',\n",
" '良好',\n",
" '良好',\n",
" '良好',\n",
" '优秀',\n",
" '及格',\n",
" '良好',\n",
" '及格',\n",
" '不及格',\n",
" '不及格',\n",
" '良好',\n",
" '良好',\n",
" '不及格',\n",
" '良好',\n",
" '优秀',\n",
" '良好',\n",
" '良好',\n",
" '良好',\n",
" '良好',\n",
" '良好',\n",
" '及格',\n",
" '良好',\n",
" '良好',\n",
" '及格',\n",
" '不及格',\n",
" '良好',\n",
" '不及格',\n",
" '优秀',\n",
" '良好',\n",
" '及格',\n",
" '良好',\n",
" '良好',\n",
" '良好',\n",
" '良好',\n",
" '优秀',\n",
" '不及格',\n",
" '及格',\n",
" '及格',\n",
" '良好',\n",
" '及格',\n",
" '及格',\n",
" '良好',\n",
" '及格',\n",
" '良好',\n",
" '优秀',\n",
" '良好',\n",
" '良好',\n",
" '及格',\n",
" '良好',\n",
" '良好',\n",
" '良好',\n",
" '不及格',\n",
" '不及格',\n",
" '优秀',\n",
" '及格',\n",
" '不及格',\n",
" '良好',\n",
" '不及格',\n",
" '及格',\n",
" '不及格',\n",
" '及格',\n",
" '良好',\n",
" '优秀',\n",
" '及格',\n",
" '良好',\n",
" '不及格',\n",
" '不及格',\n",
" '及格',\n",
" '及格',\n",
" '及格',\n",
" '良好',\n",
" '良好',\n",
" '良好',\n",
" '良好',\n",
" '及格',\n",
" '优秀',\n",
" '良好',\n",
" '良好',\n",
" '及格',\n",
" '及格',\n",
" '良好',\n",
" '及格',\n",
" '良好',\n",
" '良好',\n",
" '及格',\n",
" '及格',\n",
" '及格',\n",
" '优秀',\n",
" '及格',\n",
" '良好',\n",
" '及格',\n",
" '不及格',\n",
" '及格',\n",
" '及格',\n",
" '及格',\n",
" '及格',\n",
" '及格',\n",
" '良好',\n",
" '良好',\n",
" '及格',\n",
" '良好',\n",
" '优秀',\n",
" '良好',\n",
" '不及格',\n",
" '优秀',\n",
" '优秀',\n",
" '良好',\n",
" '及格',\n",
" '良好',\n",
" '优秀',\n",
" '良好',\n",
" '不及格',\n",
" '不及格',\n",
" '良好',\n",
" '良好',\n",
" '良好',\n",
" '及格',\n",
" '良好',\n",
" '及格',\n",
" '良好',\n",
" '良好',\n",
" '及格',\n",
" '良好',\n",
" '不及格',\n",
" '及格',\n",
" '优秀',\n",
" '及格',\n",
" '及格',\n",
" '及格',\n",
" '不及格',\n",
" '及格',\n",
" '优秀',\n",
" '及格',\n",
" '良好',\n",
" '及格',\n",
" '良好',\n",
" '及格',\n",
" '优秀',\n",
" '良好',\n",
" '良好',\n",
" '及格',\n",
" '及格',\n",
" '良好',\n",
" '良好',\n",
" '良好',\n",
" '良好',\n",
" '及格',\n",
" '及格',\n",
" '优秀',\n",
" '及格',\n",
" '及格',\n",
" '良好',\n",
" '不及格',\n",
" '及格',\n",
" '优秀',\n",
" '良好',\n",
" '及格',\n",
" '及格',\n",
" '及格',\n",
" '良好',\n",
" '及格',\n",
" '及格',\n",
" '良好',\n",
" '及格',\n",
" '良好',\n",
" '良好',\n",
" '及格',\n",
" '优秀',\n",
" '良好',\n",
" '良好',\n",
" '良好',\n",
" '良好',\n",
" '良好',\n",
" '良好',\n",
" '及格',\n",
" '良好',\n",
" '不及格',\n",
" '良好',\n",
" '良好',\n",
" '优秀',\n",
" '良好',\n",
" '及格',\n",
" '及格',\n",
" '不及格',\n",
" '优秀',\n",
" '及格',\n",
" '优秀',\n",
" '良好',\n",
" '及格',\n",
" '及格',\n",
" '良好',\n",
" '优秀',\n",
" '及格',\n",
" '优秀',\n",
" '不及格',\n",
" '良好',\n",
" '优秀',\n",
" '良好',\n",
" '优秀',\n",
" '良好',\n",
" '良好',\n",
" '及格',\n",
" '优秀',\n",
" '良好',\n",
" '良好',\n",
" '良好',\n",
" '及格',\n",
" '良好',\n",
" '良好',\n",
" '及格',\n",
" '及格',\n",
" '及格',\n",
" '及格',\n",
" '良好',\n",
" '及格',\n",
" '良好',\n",
" '及格',\n",
" '良好',\n",
" '良好',\n",
" '及格',\n",
" '优秀',\n",
" '优秀',\n",
" '及格',\n",
" '及格',\n",
" '及格',\n",
" '良好',\n",
" '良好',\n",
" '良好',\n",
" '良好',\n",
" '优秀',\n",
" '及格',\n",
" '优秀',\n",
" '及格',\n",
" '良好',\n",
" '良好',\n",
" '及格',\n",
" '良好',\n",
" '优秀',\n",
" '良好',\n",
" '及格',\n",
" '及格',\n",
" '及格',\n",
" '优秀',\n",
" '良好',\n",
" '良好',\n",
" '良好',\n",
" '良好',\n",
" '良好',\n",
" '及格',\n",
" '优秀',\n",
" '及格',\n",
" '及格',\n",
" '及格',\n",
" '及格',\n",
" '及格',\n",
" '不及格',\n",
" '不及格',\n",
" '良好',\n",
" '良好',\n",
" '及格',\n",
" '及格',\n",
" '优秀',\n",
" '良好',\n",
" '良好',\n",
" '及格',\n",
" '及格',\n",
" '良好',\n",
" '优秀',\n",
" '良好',\n",
" '良好',\n",
" '良好',\n",
" '优秀',\n",
" '及格',\n",
" '良好',\n",
" '优秀',\n",
" '良好',\n",
" '及格',\n",
" '良好',\n",
" '良好',\n",
" '优秀',\n",
" '不及格',\n",
" '良好',\n",
" '不及格',\n",
" '不及格',\n",
" '良好',\n",
" '及格',\n",
" '及格',\n",
" '良好',\n",
" '良好',\n",
" '良好',\n",
" '优秀',\n",
" '良好',\n",
" '不及格',\n",
" '不及格',\n",
" '优秀',\n",
" '良好',\n",
" '及格',\n",
" '良好',\n",
" '良好',\n",
" '优秀',\n",
" '及格',\n",
" '及格',\n",
" '良好',\n",
" '不及格',\n",
" '及格',\n",
" '优秀',\n",
" '及格',\n",
" '及格',\n",
" '优秀',\n",
" '良好',\n",
" '良好',\n",
" '良好',\n",
" '良好',\n",
" '良好',\n",
" '良好',\n",
" '及格',\n",
" '及格',\n",
" '及格',\n",
" '及格',\n",
" '及格',\n",
" '良好',\n",
" '良好',\n",
" '优秀',\n",
" '良好',\n",
" '不及格',\n",
" '及格',\n",
" '良好',\n",
" '良好',\n",
" '及格',\n",
" '不及格',\n",
" '良好',\n",
" '及格',\n",
" '优秀',\n",
" '良好',\n",
" '优秀',\n",
" '及格',\n",
" '及格',\n",
" '及格',\n",
" '及格',\n",
" '及格',\n",
" '优秀',\n",
" '良好',\n",
" '优秀',\n",
" '良好',\n",
" '不及格',\n",
" '良好',\n",
" '优秀',\n",
" '良好',\n",
" '及格',\n",
" '及格',\n",
" '及格',\n",
" '优秀',\n",
" '及格',\n",
" '优秀',\n",
" '良好',\n",
" '及格',\n",
" '及格',\n",
" '及格',\n",
" '良好',\n",
" '良好',\n",
" '良好',\n",
" '良好',\n",
" '良好',\n",
" '良好',\n",
" '良好',\n",
" '优秀',\n",
" '良好',\n",
" '良好',\n",
" '不及格',\n",
" '优秀',\n",
" '良好',\n",
" '良好',\n",
" '及格',\n",
" '良好',\n",
" '及格',\n",
" '及格',\n",
" '及格',\n",
" '良好',\n",
" '及格',\n",
" '良好',\n",
" '优秀',\n",
" '良好',\n",
" '良好',\n",
" '及格',\n",
" '良好',\n",
" '及格',\n",
" '及格',\n",
" '优秀',\n",
" '良好',\n",
" '良好',\n",
" '及格',\n",
" '良好',\n",
" '良好',\n",
" '及格',\n",
" '良好',\n",
" '良好',\n",
" '良好',\n",
" '良好',\n",
" '良好',\n",
" '及格',\n",
" '良好',\n",
" '良好',\n",
" '良好',\n",
" '及格',\n",
" '良好',\n",
" '良好',\n",
" '良好',\n",
" '及格',\n",
" '良好',\n",
" '及格',\n",
" '及格',\n",
" '不及格',\n",
" '及格',\n",
" '优秀',\n",
" '良好',\n",
" '良好',\n",
" '及格',\n",
" '优秀',\n",
" '及格',\n",
" '良好',\n",
" '良好',\n",
" '良好',\n",
" '及格',\n",
" '优秀',\n",
" '良好',\n",
" '良好',\n",
" '良好',\n",
" '及格',\n",
" '良好',\n",
" '及格',\n",
" '优秀',\n",
" '及格',\n",
" '及格',\n",
" '及格',\n",
" '不及格',\n",
" '及格',\n",
" '优秀',\n",
" '及格',\n",
" '优秀',\n",
" '优秀',\n",
" '优秀',\n",
" '良好',\n",
" '良好',\n",
" '优秀',\n",
" '良好',\n",
" '优秀',\n",
" '良好',\n",
" '良好',\n",
" '良好',\n",
" '及格',\n",
" '优秀',\n",
" '不及格',\n",
" '不及格',\n",
" '良好',\n",
" '良好',\n",
" '及格',\n",
" '良好',\n",
" '不及格',\n",
" '良好',\n",
" '不及格',\n",
" '优秀',\n",
" '不及格',\n",
" '及格',\n",
" '及格',\n",
" '优秀',\n",
" '及格',\n",
" '良好',\n",
" '及格',\n",
" '良好',\n",
" '及格',\n",
" '良好',\n",
" '良好',\n",
" '及格',\n",
" '良好',\n",
" '良好',\n",
" '良好',\n",
" '及格',\n",
" '优秀',\n",
" '良好',\n",
" '良好',\n",
" '良好',\n",
" '优秀',\n",
" '及格',\n",
" '优秀',\n",
" '及格',\n",
" '良好',\n",
" '及格',\n",
" '良好',\n",
" '及格',\n",
" '及格',\n",
" '良好',\n",
" '及格',\n",
" '及格',\n",
" '良好',\n",
" '良好',\n",
" '及格',\n",
" '良好',\n",
" '及格',\n",
" '不及格',\n",
" '良好',\n",
" '及格',\n",
" '良好',\n",
" '及格',\n",
" '及格',\n",
" '良好',\n",
" '不及格',\n",
" '良好',\n",
" '优秀',\n",
" '及格',\n",
" '优秀',\n",
" '良好',\n",
" '及格',\n",
" '优秀',\n",
" '不及格',\n",
" '良好',\n",
" '不及格',\n",
" '及格',\n",
" '及格',\n",
" '及格',\n",
" '及格',\n",
" '良好',\n",
" '优秀',\n",
" '不及格',\n",
" '及格',\n",
" '良好',\n",
" '良好',\n",
" '及格',\n",
" '及格',\n",
" '良好',\n",
" '良好',\n",
" '优秀',\n",
" '优秀',\n",
" '良好',\n",
" '良好',\n",
" '良好',\n",
" '不及格',\n",
" '良好',\n",
" '及格',\n",
" '不及格',\n",
" '不及格',\n",
" '及格',\n",
" '良好',\n",
" '良好',\n",
" '优秀',\n",
" '及格',\n",
" '良好',\n",
" '良好',\n",
" '优秀',\n",
" '优秀',\n",
" '优秀',\n",
" '及格',\n",
" '良好',\n",
" '及格',\n",
" '及格',\n",
" '及格',\n",
" '良好',\n",
" '良好',\n",
" '及格',\n",
" '及格',\n",
" '良好',\n",
" '及格',\n",
" '良好',\n",
" '及格',\n",
" '及格',\n",
" '及格',\n",
" '良好',\n",
" '及格',\n",
" '良好',\n",
" '不及格',\n",
" '及格',\n",
" '不及格',\n",
" '良好',\n",
" '及格',\n",
" '优秀',\n",
" '优秀',\n",
" '及格',\n",
" '及格',\n",
" '良好',\n",
" '良好',\n",
" '及格',\n",
" '优秀',\n",
" '良好',\n",
" '及格',\n",
" '优秀',\n",
" '良好',\n",
" '良好',\n",
" '不及格',\n",
" '良好',\n",
" '及格',\n",
" '优秀',\n",
" '不及格',\n",
" '良好',\n",
" '优秀',\n",
" '优秀',\n",
" '及格',\n",
" '不及格',\n",
" '良好',\n",
" '及格',\n",
" '及格',\n",
" '良好',\n",
" '良好',\n",
" '优秀',\n",
" '及格',\n",
" '良好',\n",
" '良好',\n",
" '及格',\n",
" '良好',\n",
" '良好',\n",
" '及格',\n",
" '良好',\n",
" '良好',\n",
" '不及格',\n",
" '及格',\n",
" '良好',\n",
" '优秀',\n",
" '及格',\n",
" '良好',\n",
" '不及格',\n",
" '优秀',\n",
" '优秀',\n",
" '及格',\n",
" '良好',\n",
" '及格',\n",
" '不及格',\n",
" '不及格',\n",
" '良好',\n",
" '及格',\n",
" '良好',\n",
" '优秀',\n",
" '良好',\n",
" '不及格',\n",
" '优秀',\n",
" '良好',\n",
" '良好',\n",
" '及格',\n",
" '优秀',\n",
" '良好',\n",
" '良好',\n",
" '不及格',\n",
" '良好',\n",
" '及格',\n",
" '及格',\n",
" '及格',\n",
" '良好',\n",
" '优秀',\n",
" '及格',\n",
" '良好',\n",
" '优秀',\n",
" '良好',\n",
" '不及格',\n",
" '良好',\n",
" '及格',\n",
" '良好',\n",
" '及格',\n",
" '及格',\n",
" '及格',\n",
" '不及格',\n",
" '及格',\n",
" '良好',\n",
" '及格',\n",
" '良好',\n",
" '良好',\n",
" '优秀',\n",
" '及格',\n",
" '及格',\n",
" '及格',\n",
" '优秀',\n",
" '良好',\n",
" '良好',\n",
" '优秀',\n",
" '良好',\n",
" '及格',\n",
" '及格',\n",
" '及格',\n",
" '良好',\n",
" '及格',\n",
" '及格',\n",
" '良好',\n",
" '良好',\n",
" '良好',\n",
" '良好',\n",
" '及格',\n",
" '良好',\n",
" '及格',\n",
" '优秀',\n",
" '优秀',\n",
" '及格',\n",
" '良好',\n",
" '及格',\n",
" '及格',\n",
" '优秀',\n",
" '良好',\n",
" '及格',\n",
" '良好',\n",
" '及格',\n",
" '及格',\n",
" '良好',\n",
" '良好',\n",
" '优秀',\n",
" '良好',\n",
" '及格',\n",
" '及格',\n",
" '及格',\n",
" '良好',\n",
" '及格',\n",
" '及格',\n",
" '不及格',\n",
" '优秀',\n",
" '不及格',\n",
" '良好',\n",
" '优秀',\n",
" '优秀',\n",
" '良好',\n",
" '及格',\n",
" '及格',\n",
" '良好',\n",
" '不及格',\n",
" '良好',\n",
" '良好',\n",
" '良好',\n",
" '良好',\n",
" '良好',\n",
" '及格',\n",
" '优秀',\n",
" '及格',\n",
" '及格',\n",
" '良好',\n",
" '良好']"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"grade_level = list(data['level'])\n",
"grade_level"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "e63a4c89bdc0b8f2",
"metadata": {
"ExecuteTime": {
"end_time": "2025-04-24T15:56:55.458552Z",
"start_time": "2025-04-24T15:56:55.456407Z"
}
},
"outputs": [],
"source": [
"dic = dict()\n",
"for i in grade_level:\n",
" if i in dic:\n",
" dic[i] += 1\n",
" else:\n",
" dic[i] = 1"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "df84a3fdc0f83342",
"metadata": {
"ExecuteTime": {
"end_time": "2025-04-24T15:56:55.499078Z",
"start_time": "2025-04-24T15:56:55.496765Z"
}
},
"outputs": [
{
"data": {
"text/plain": [
"{'良好': 417, '优秀': 139, '不及格': 103, '及格': 341}"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"dic"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "cf7b93ce004c1c00",
"metadata": {
"ExecuteTime": {
"end_time": "2025-04-24T15:56:55.593999Z",
"start_time": "2025-04-24T15:56:55.524661Z"
}
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAhgAAAIuCAYAAAD9p3GgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAC4jAAAuIwF4pT92AACQMklEQVR4nOzdd3hb1fnA8e/xXokSZ5PEOAOwALE3lA0NFbvsZaBltGwo1EBb1B9LQFktZRcwe7RsQ9h77yggsxIlIduxY8fbks/vj3Nly45sy7bsK8nv53n0WJau7n0ly7qvzniP0lojhBBCCBFPaXYHIIQQQojUIwmGEEIIIeJOEgwhhBBCxJ0kGEIIIYSIO0kwhBBCCBF3kmAIIYQQIu4kwRBCCCFE3EmCIYQQQoi4kwRDCCGEEHEnCYYQQggh4k4SDCGEEELEnSQYQgghhIg7STCEEEIIEXeSYAghhBAi7iTBEEIIIUTcSYIhhBBCiLiTBEMIIYQQcScJhhBCCCHiThIMIYQQQsSdJBhCCCGEiDtJMIQQQggRd5JgCCGEECLuJMEQQgghRNxJgiGEEEKIuJMEQwghhBBxJwmGEEIIIeJOEgwhhBBCxJ0kGEIIIYSIO0kwhBBCCBF3GXYHIIRSKldr3RSH/UwBGoEmrXXr4CPrsu+9gM2BOuB5rXVNPPc/VJRSaVrr9j622Qn4SWtdFedjbwbsBDQAlVrrr8MxAZla65Y4HktprXW89jeclFKjtNbrbI5hnNZ6jZ0xiNQjLRgirpSxn3USibytXCn1vVJqTrft04AvlVJXK6UKYzxGT+/bO4C1wE9KqQ0G+BR6UgL8EzjdOsaAKaU2jHG7fKVUrVLqF6XUmxG3T4rx8ROA15VStyqlVA/bKOAeYJFS6iGl1K9i2XeMZgH3Ao8BDut4RwDfAbfEsgOl1PlKKa9S6ldKqfReNh2nlGpSSi1VSjkHGfdwe1wptcD6HzlooDtRSs1VSt2rlPqDUiozyv2HKKXeVEpt3O32NMCvlHpGKXWSUio7ymPTe/m/62+cGfHal0hs0oIh4kYplQ98CmwKnAQ8BKC11kopF7AxsC8wN+JhR2NO3pcBo4Bz+zjGaMCnlHoAeB74MuKba53180Ot9bJ4PKcI4W+YP0b7pmydqP8LvAHc0cM2M4G7gO2VUltprQN9HLMRyAdGA16l1GTgQWB3pdQOWut5fTx+BrAtsBcwXil1SpSWncMwLTMA1cBXfeyzPyK/Ef9g/SwANgE2Vkrdp7X+rI99HA9sB+yHeR51VoKVC1Rpreut7aqBbMzbzR9+sFIqC/P6jdZaL+grYKVUnta60br+W0xSWQO0YL6QZQHjgaO01u/0tb8YjpcJ7I55XfKAPw9wP1mY1ycLaNVat0XZ7HfWNn8FToy4fUdgAnAo0Aw8FeWxmwGfK6XWYN6XrUAbEALagWitR2nWJcOKKxvzP+4ApgIr+vMcRRLSWstFLnG7AI9gPmx+BjIibr/Tuv3jiNsygO+t2x8BVAz738/aXgPPAFkR991t3f74IJ/DB8ACYD7wNfCF9Xw0UIU5CX8HLAVOtx7z14i43gCyo+x3JiYJ0sCHQHoMsVRZ2x8LKOB96/d3YnwuO0Uc843IY2I+8H+w7rtpCN4LG0W8JuMibv8ac2K6pI/HT6bz5LV9xO2eiP22Y06KdRG/1wFNEY/VmC6avuJNs/7ujwKHA8dYj22z9lePSTQ0UBan12hORIylg9jP7tY+qgFHD9vMwCQGIWDriNuvjfh/ivo/CEyPiDMel7R4v9/kkngXaaYS8ea1fs7EfCMK+xT4GHOSCzsT06rxFfA7bX2S9WFX62cLcLbu+o2817EG/eDAfBhvZl2cmG9c4fuc1mUDIEspdSjwd+v+64AjdJTxBdp8gz7L+nVn4E8xxBJuBWi3Xp//w3TRvKOU6rMFUmv9MaYVYDVwpdY6FHH3JZgk4F3g4hhi6aCUGqWUmqyUyuup+wVYGXE98rPmj5jX7yalVKHVlRPNwZik6lm9fktHCybB8wPfYN5D7dbtX0Rc5gOLMONA+jIH83c/CtOi8CwwSmudqbXO1VoXACdb2x4aw/5QSm1oPcesHjY5zvr5LVaLXy/7yrH2VayUyu129xHWz9u11rXRHq+1XohpnUgDbrb2mY1p2agGzujlfzD8f7ZSa626X4BzMH8vR7T7rW2mWPto032MCxKpQcX2mS5E7JRS5wLvaa17bG63mvv9mA+7bbTWP8e47/mYk/4dWus/drvvTuAM4EnMSTWyeTbT+pkHLNedTevRjjEB0wzcGP7AtcYOPAWUa61PtvqQRwM7YE5EucCFWuubY3gOc4FfAx8Bu/aWWCmlPsK0QpyM+WZdAEyznkuW1vqjHh73B2A25sQQtJ535EBChUkqcoH7MCfrDEyrxkda6//28Rx+i+kSCmuhs8k8ROc31fHW/dXW7+G/SQ7mbwLwb6312VGO8SqmS21rrfU3SqkMrXXQGovhsGKt0Vo3W9s3Ayu01sXW79nAWExytqq352Nt/wJwIHCL1vqCHrYZByzDvP47REl8um8fAMJjbtoxr1GQztdolPWatGJaSbo8nM5umUzr97CdreQRK9FcjDmBf4jp0knDvD71mCQm27p9J+vypNZ6qVLqZOB+4Eyt9V3WvsYCdZFJslJqPCZJXam1ntztOc7G/C+vBo7RWr/bw2sxGVgOtGitc3p73URqkARDDJpS6lNME2ojnSeZvt5YYzEtALXAL0A65sSTD/yitd4hynG2xDSvD9YBWuu5fW/W5dhdEgzrti2AtzDP5U9a65ti3NdGmNabS4ExmG6KWsxrFz4BZ2JekzF0noi7e19rHXVQplLqYUySNRD/p7W+orcNlFIHAi9YMVf3suk4zPOpxrwv0jHPp9cEQyk1DQgAL2qtD7Vu+9g65m3AacAN1ubtmBN0DuZ914I5KYdbTe7SWp/Zx/PZHXgH8x7eUPcyo0Yp9Simy+p9YI/evo0rpX7EnPibrUsrnUnfLCvm1ZikpbvIMQwZmCQx17rsobX+xDrGsZjkMzwuAjqTxYcwY5Wewrw24WOHZVvbNtH5vgPTJfV5xPOImmBYrVfhRLAnt2utz5IEY+SRQZ4iHvIw/eUD4bAukXo6YZ1n/Wyis8k2Ui7mxNKG+TBXmBNaunV7j5RS21qPqadzEFv4wzgUZXsXprtnNHAKZibAKMwJI5fOwZmfdm+h0Fr/CFxk7aeN6K8B1vMIf2ttwowtCJ8csuj6jba78LfPi7XW/+hlu8jndBumC6c5hs3D+/9Qa71nL/t8G9gDOLB7a4s1wHF0Dw+9DPN3u8radn/MYMTtgM8x3URfYgYKrsV0gZyK+ds9gnl98jEJTqC3J2KdJMPJ4d29JRcRsR0K7AZcA5T1tKHWeqMejrk7Jjltw4wrWmA9tyZgmdZ6cR8xRLrI+rl7RNJxHaYL7HXMe+YXTHfbbMzr8gGdf+dNMK1iP1m3jSXKe74HZZjk4r/AJxG3T7COX0Nn96EYaeweBCKX5L9g+rk1sOcg97OntZ/5Ue5zYj4og8DsHh4fHki63iBPzMk4D/PBF20A5griO4gtfAl/U98eM95hhvVzO+u4mZg+/12s2ydiTgDh1sXrrf3cFu059fJahl+LP/Xj9b/Nekyvgy+tbfeytn27j+3ut7Y7JOK2KUBRL48503pMM2YcRbh7JTwGZVNgEhEDfK3HNQOBKPvLxSTAUY+JOQFqTKIyMcbXqiwiphuJYcBuxGMdmKRHAxdYt42J2N/B/dhXeCDqO91u91m3T+12++fW7cVR/u7H9HKc8dY2KyJuO8O6bRWmZWK6dXsGJrHRmNk24e0nh/+usT4/uST3RVowRMKzxjvchvlG+4jW+qf+7kObT7hG6xLNWkzy0oj5dt59Gl64GXw2pmunDtNdozAfqOEunizMCS0HkyhozAnl027HW4T5kG/DjBnpyXLr53q1L6zn1JPBDKKLpd802PcmgPlWDJ3jEMDM0LhZKVUBXKYjppVavo+43o6ZwbMdpsXieiLGkiilwgM7g5jm/iKlVC2df5dsOrtKKjBjLIh4/GGYGUAAHh3DWA3LDZjxN4cBFwK/Ukqdpfsek5EGlGNej0d055idWszrrjAtG32y9hUeVH11xO0TMclqpdZ6aYzPp1+ssRt3YgbX7g+8DbyvlDoc08KzD3Cd1rq397ZIcZJgiHhYgfkG1qKUmo5pfl2H+UYZJPoJK3wCyMSciLfHTMl8DnPyjXQVsDfmhO+Je/SA1rqkr22UUudjZon8gPmW+X3vj+h43KgoN6+MuN9hQtB1EbdlY17TcN98TMW1IvQ0biPej93YGlybRuf4ilwgpLU+hs76F5HFnXa1tptA12Qi7F3gAMyJthXzrbsNM9A1iHlf1WC6s5owCUZ43E87nWMXsujsKimgc3wCAEqpg4GHMe/F94BXlFJjrX22amtshXUiDw+4DHe7ZQBnY1qcdsW8fz9VSt2gtb6kl9frZuAQzGDM34Vv1FprpVTQel1imfGC1rpdKXU/8Cut9atKqWetx/qs59vT7JxB01o/YCV3b2qtq6wurDeAzzCv0Y1a6x67jsTIIAmGGDStdccAL6VUMWbAZyvmw76nvtxcuk5dTNNaz6fb9D+rf/xH4BXg+4G0XgyWNavkPsy331cwTclr+7GLGkzXSANmBP/zdG1JOQy43zrBhDCvSybwBNZ0Qrq2AMQiPObkaKXU5r1u2WlH6+d6lRyjCP/tpmCayrv7zvr5rfVzi4j7drF+3qCjDJDUZirtXACl1O+AbYArtNY+a5NcKwFr19ELSnWwtsvQWjd0u/0C4B/W81gCnEC3xLbn2bddHIlJjA/BJNo9ziJSSl1CZyG5DYFvuh0j/Hn8XbfbwwlNu9Z6Vrfd/gN42rpeDGwJ/F5rHaSz9WtIaK0fhI4E+jhMEhxuhfmtUmo18D87/mdFYpAEQ8SV1jqglEqPduIAsObv/w0zAAzMh/vT9PCtzeoGuB9zAk6z9rEZpl++RltTFHtiTWkchRns16q1XhLrc7GSm99hWi0KrRiXYKpqdmxmXcLTYAsw1T47alxYJ8yAtc9w835k4hXux26gsxjSL5hv3OEP52lKqcy+TqgRwt0zW1uX/iiIYZvwLIAXtNYHh29USm0CVNLZjfE9pkVgW2sKpBNzcl0NvNTbAZSp2HkdMA9TDCrS3sBLSqnwgN/ImUvhv0d4/MsldM44CfsGMzU3B9PEH+4aCVn7y8Kc2MPdL93lWz8DmC6fq4HvtNZRT+pKqauAyyNumhptO8smPdy+XveNlTiFE6/wwNuOiqVWctygreqksbBqdkzUWv/Sw/2jMH/HTTFdIYdg/sdewdTD2Bzzensx/ytrMH/Du2ONQaQIuweByGVkXDAf2Gdg5utrzIj2c4io9tmPfdXTOSAuhDmBNWBOyBpzQmiiaz2GqAMleznGtpiuHo354F5rXcL7qsP0m6+js6k+fLy5vex3T2ub16PcV0yUQa6Yk7EGNutH/L0OOsSMC8kayGOtbQ63YnoiyuumgVcjbnvbuu1XmG/4Gri5j/3nWY8LWvscZf08CpNA7Gztpx6T0ES7rLG2+X0Px5gBbG5dV5iBjOHBteGKqYdEedyEiPdBj4NVrW2zMWu9hAet/su6/t8o2zZj5dTdbi+h2wDLHo71Md0GW2NagsL/J80R79EG67WrxyRU4fd5+Lrutu+OQZ5AkfW+D/+vvYipJHo0sFHE//u5mMRCAwsj3t8yyHOEXKSSpxguu2AGhU3HzMl3aq3/pU1T7kCFP7QbMB944amrrXQmALFMueyglNpIKfUEpi95F8wAzOla6zGY6ahgZjY4tNYOrfUorXWBNpUe0zFdP0cP4jlFE15zZJtYH6C7VuzsQil1NaYl5qxo92utQ71UngwbZ/2s63b7qCi3h1sqzsTUr9CYRdB6ii8L8618D8xJ7zlrf58DXq21pnM8xfta6xJtxtDsh0nCwr/fb20T9T2mtV6oTbcc2qiy9g3mZAjRp7hOjLje46BQpdRWmPfK7614j8R8yx9O4VY3P2ZQcriV40vM6/k5JoEF02pWiRlUW9PTDrWZQnsG5m85VWt9ICZxeQz4QSn1M6aV8mWt9RaY9+2p9PN/USQ/STDEoCmltlRKTVdKjVZRVnHspkVrfZSOGK2vjByl1FhlSitv0dsOME2zDsw37Xyt9Xhtiv+ESy0/r7WepLUu1FrnYprJJ9HLAFGl1DZKqQcxYweOwgyuPFhrfbTWepUyS8H/09r8wogTURda62bdQ6nmQfjK+rl7XxsqpRxKKY9S6mxlVmNVSqkPlVLPKqUutDZrwiQCf7EGNUY+fjul1DuY7ofeulCnWz+714wIJxiRVUOfxJyAjsN0LfxXa/0tPdCm/Hu4FkoL5iT+MmYczK29xLQQCCql3L1s0ydrHNFU69jdZ7hAZ4JRp3voorNeu4sxVWcbMO+lFwYT10BorX+rtS7SWm+utd4J87q2YGpm7KlNDZNnrM0v11pvobWerbXudWVjrfWjWut7tdYrrd8/wLQIXYJJ6C7HTGVGa/2V1jqmmTEitcgYDBEPnxAxMNAaXR7EfGsLT/EMv9eyrWmE4YFr4SmekdbQWWJ6Pbp/RYiwWkl6+6Z5L50j+lswRZeu0lqvs+5Pw7RoTLWe003dBuGlYVouHMB5Wutoq1H2dOzJWuu+VpV8D1NM6UClVJrufR2HmcAVmJPaHVprrczS9TtjlrMHM67hBExfv5eugzRHYwpIhadA9rReSnhWSPcxLeGZCx0tGNqMy3kBM4C3oZd9RjoDWBo+gUXR5Q9gzcRJx3xL7l6ltb9fpE6wfn6k1199FjoTjB7fU9Z77nhlysJ/r7XuPk15yCml9sbUxwhZv2djEu0FPSXIAzzOhZjE8kXMoNN/YMZmRC0ZLkYOacEQ8Rbuy+1+ifygDteYCA/Os1sZpln4KaBEa/3ncHIBZjognR+WmZixAJGXrTH95JMx4wZiYp0U31dK9Tjgzxpo+jpm1slkzIDE8H3dEzMwg+/ALGMffm3DA/xarOfTRuegyc2VUh1lm7XWb9JZW+EiaypnNNtbP/1KqZ2UUv+nlCrDlD8H83qG4yyic4ZKT0t7d6G1/jJacqGUKrBek+6LfYVn2fijdA/FMmg1vH8HnRVjH+9hsz4TjDCt9UM2JRdO4H90nb2zJSahj9usDqVUPnA+pnXwc8zA2euBJT0kZ2IEkQRDxMNmmG9G+Zhuizyt9Wit9Tit9QSt9STMoEAwXSQTtNZjrW2ytVlpMRczU2M6ndMYh4U2paFdVtdNoIfNLsB8O8/S668SeZS1zTyt9eoeHt+dwhRcmkXX2QUABVYXx1OYRKEBMw4BzEqkYTdG2W94DZfIk1q0Fo9HgMO11rtqrZutrpQ7rab9v9M5vfR+ZWqbdAZuyqTPxHS1fIYZI3IOJmmZjemqeMratgizVsUUTKvGKOCuiH3topTap9v+xymlipRS2yqlDlZKXayUul8p5aPz23chXRPXcPfRx9ZzycWMf3gEc9KL1b8xrWcB4IEetok5wYiTcDIVa6vDBExRsTGYQcVh4f/Bd+ISFR2zWIoxr/9NWNVjgUql1GPxOo5IUrGOBpWLXAZzoXP2RL9HkGOa8rfEnNSmYk4AYzAnq3w6K2eGR+s/SeeaIKOs7adhmvW3wQwejDqDYoDP7Q7ruNfFsG24xHZ4xstPmEXJ/ovp79fdLvOtx+1EZyGpLekckX83ESXDMWNINHBcxG19lnLHfNPVmMJYszAnjPAg2hO7bfuAdd9TEbfdZsVyOFYpdsyskWXWti9jWhmqrN8vtLY5D5OoXBaxr8uivA7hy1dRYh+PSWo0neuDLAD268ffMFwtNjwzYvdetn3U2u7OAbxXwrNvep1FgklA/2ldvrQe83Mf+w5vF551dF3EfeGFBUNYJb0j7vs3fZcKD5f57msmSyami+kL4NAe9tEar/89uST2RcZgiOEymNayq4Hf9mP7I61Lb6ZgptwNijW+4Vjr19djeMgG1s8MzLRXN2bQavj5tWAqIn6IWc79EwCt9cdKqdcwMyXK6Rz42bHcu1KqhM4ukq8jjhnuMpijlPpAR9TSsJq4i+hckGo0sFhr/bNS6m/AYzqiUJJSamvMYE2sOLDiOztim3HKLLZ1Dubv/gxwrNa6RZmVP18GblBm6fNDMMlgZAGpVzB/8xXAa9br8Dmm9HXk4NHwInX3YxKuxzEntr9jBhy+qpS6Dzi/++O67WMmZlbLXtZNZbrnJcd3sGKGgb1/Yuqu0VprqwssssXq/Z62t/6O4YXVxmOKmP3Zum8UJoEdjVkNuPu4mfDA7Ghdbt23cSizUm9f/MARyqxCHBbuisuMYSyRSAV2ZzhySd0Lpin5dMw0vVcw317WDWA//6Xrt9gWzLexKky1wiWYKowB6+ci67almGbsWiLm91uXyQN8TidguksuwBQTWmrt7xf6qOmB+ZD+iM4WjH2s2zfCJBRnAmN6efxGmPEUkc/jrxH3n4+ZXthERC0LTOXQ8Pat1mtSZW3XvYXg0j6eQ/jb+5c93D/Zeu3D+7sOU6U1cptS1q9RslvE/dmYFpSoi7lhksNwohLez+NYrVKYb/9nYLpkwq1EO0bZz1RMXY7I1/TqKNvlYVqBVtI5hkQTpUZGDO+fczCJZXmU+8LPJdwCNMf6e32BWeRtVC/7vSIirjsjbt8UU1RMW/Gv976ns0Xq5F7274zyXhnMpcf3uVxS52J7AHJJ3QvmG1Gg2wfLWwPYzwaYLg4HAyjM1S0eB6apPubVL7vtY06UD8tmzHLksRz/Rusx5wzw+AfT2b1SS5TVP+m2Wiymi+lZOrsnIi8h6/avMbUL+nx9Md1de/Zx/6reTsDAEXQmAO/14/kfRNfEaAFwfA/bbhbx/psPZHa7vxgzEFJjkoyoBbmsbS/q9ro9RrfEaTAXTBIT3vekiPdLZoyPH42pYfFcOC5Md0yLtc96TGtXtMc+Y21zbi/7D3eZ9dpF0keM46y/w3xgWrxeO7kk7iVctU6IIaGUugNTeOpLzPTBu3XEol7JSCn1GaY14gdMF8Yjuu+pppGPPx24Rw/wn08ptQemteIurXX3KZl9PTYN0z2jMAuSDabQWW/Hydfd1v+Iss10zEnwcd3zdNRojzsbM47mMeA53XtRsUmYsRUX6h7KxCulzsIUhVoQ7X5rm2LgL5jWgNf1+ivADoq1/4XWr9tqrb8cwD52xozZiVxt9jeY2iEnaK0/6eFxb2NeT4/W+u/RthFiICTBEENKKZWj+1gvRAgxdGS8g7CLJBhCCCGEiDupgyGEEEKIuJMEQwghhBBxJwmGEEIIIeJOEgwhhBBCxJ0kGEIIIYSIO0kwhBBCCBF3kmAIIYQQIu4kwRBCCCFE3EmCIYQQQoi4kwRDCCGEEHEnCYYQQggh4k4SDCGEEELEnSQYQgghhIg7STCEEEIIEXeSYAghhBAi7iTBEEIIIUTcSYIhhBBCiLiTBEMIIYQQcScJhhBCCCHiThIMIYQQQsSdJBhCCCGEiDtJMIQQQggRd5JgCCGEECLuJMEQQgghRNxJgiGEEEKIuJMEQwghhBBxJwmGEEIIIeJOEgwhhBBCxJ0kGEIIIYSIO0kwhBBCCBF3kmAIIYQQIu4kwRBCCCFE3EmCIYQQQoi4kwRDCCGEEHEnCYYQQggh4k4SDCGEEELEnSQYQgghhIg7STCEEEIIEXeSYAghhBAi7iTBEEIIIUTcSYIhhBBxppSaqZQ61O44hLCT0lrbHYMQQqQMpdTlwFWABlxa628Hub8rgFXAfOArrXX94KMUYuhJgiGEEHGklJoELAaygHu11qcNcn9fA1sCi4BttdZrIu4bDazTfXyQK6UyAbTWbYOJRYj+yLA7ACGESEZKqQlAG9AMtIRP8lrrlUqpBzBd0P+L2F5hko4cIF9rvSzGQxVaP++MTC4sC4BCpVQLEOp2XxqQHnHZC3g7xmMKMWiSYAghxMDcCxwc/kUp1Qq0AEGg3br5cKv1IAvIjnjscmCDvg5gJSWTrV9fjLJJM1DL+skFgKIzOQHTZSPEsJEEQwghBqbF+rkCc5KPRSYwE9PyEYvp1mNWa63nd79Taz0t2oOUUmnAHcDpmFaOS4D3YjymEHEhCYYQQgxMuJXiUq31A7E8QClVDCykl9YEpdR04ANM0hL+jM5TSn2B6fbIAvKBS7TWT0Z5fA7wIHAk8DhwmgwMFXaQBEMIIRJLOqblYjqdSUwWsJl1PdzVsrr7A63k5Dlga+BKrfXfhjZUIXomdTCEEGJw7ldK6VgumNaLviwFpmGSinLrtv211jla6xyg0bptcZTH7opJLt6S5ELYTVowhBBicAYyBqNH1lTSpQBKqZ0x4zU+tX4fDeRhWjaiJRhhrTHGI8SQkQRDCCEGZyBjMGLZdgywCfCZ1jrcahEe1LkIyFZKjQXWaK2jzSKJ3FcOME5rvTSWYwsRD5JgCCFEYtoZM9X0w4jbSqyffuBA4DFAK6WaMa0W6db9eyulqjGf8TmYlhOs/QkxLGQMhhBCDE68x2CEHWj9/CjitvBAz68iblOYgZ+ZdCYY4aJe4duFGHbSgiGEEIOzFFgb8fsUTIGrRUDk9FCF+VKX1m37nhxk/fwk4rbdrJ8fAe9ax1qrtW4GUEodg2nVeENrPce6LQ0oAMbF+oSEiAdJMIQQYnD+EjkGQyl1BPAU8LLW+g/RHqCUmqOUOklr/WAP92+DmaYaBCYBi5RSeZhZIm3Ae1rrdcC6voLTWrcDddZFiGEjXSRCCBFfzwA/A6cppXbqfqdSyg08DZQrpV5USm0YZR9rgJcwXwI/Vkr9B/gDpsDWa1prSRZEwpMEQwgh4sia0fEnzHiIp5RSU8B0VVhLuT8P5GIWHrsbM821+z4Waa3dwH7Aj8CpwD+su28f6ucgRDxIgiGEEHGmtX4W00oxDXhFKbUd8BZwFfANpnDWXlrr57XWLb3s53XMUu2vRNx8oTXdVYiEJgmGEELEiVJqB6XU2davp2JaH1zAZ5gCWycA22qtX+vHbl3AHpj1SxqBvYF5Sqkj4xa4EENAEgwhhBgkpdQspdRjwMfA1UqpAq11LSYZ+MHabBywDZ21LGLZ797Aa5haFtcA+9A5YNMXv2cgRPzJLBIhhBic84F7MJ+nzcBdWKulaq1/sbpH/g2cCFyI6eL4CTP99CvMcurfa62/C+/QmjHyd+ACzFiO54ArtNYhpdTRQLXWutLadjoQwhTa2svaRY+rtQoxXJTW8j4UQoj+UErNxkxF3cq6qR14BLhca72kh8fsCniAfaPcfZLW+iFru7OBy4HJ1n2vAwf2NFZDKbWPtU2ku7XWZ8T6fIQYCpJgCCH6pbisQgGjgbHWpTDiei7m23QIU8Mh8tLbbW2YBcNWBLzu6mF8OgOilDoPuMX69S3gAq31NzE+dgZwHHAwsB3wk9Z6k4j7dwaexAwQfQo4sbeBoNZj3sfUyAD4BZOQxBSPEENFEgwhBMVlFdnAbGBjzGDEcXRNHCIvDjpLUg+FFszUzeURP5dH+X1lwOvudZGvoaSUegaYq7W+axD7GANM01rP73b7FsBeWutbY9zPQZi/21fAR9aKrELYShIMIUYIq+WhCJNEbGL9DF82JPkGfbcDVcAyzOJf88KXgNf9y1AfXCmltHyACtEjSTCESDHFZRXpmNoJW9CZQGwCzMJ0YYwE1UQkHNZlfsDrbrI1KiFGEEkwhEhyxWUV+cBOmIWwdrOuF9gaVGJqB37CFLoKJx1fBLzupbZGJUSKkgRDiCRTXFYxmc5kYjdMa4VMOR+4nzFlu98C3gp43cvsDUeI1CAJhhAJrrisooSuCcUseyNKeT9iEo43gdcCXvcae8MRIjlJgiFEgikuq8jC1Eo4HDgImGhvRCNaO/AF8DIwF/jUzpkrQiQTSTCESADFZRV5wBzgt4AbMxVUJJ5qTFGrl4HnAl53jc3xCJGwJMEQwibFZRWjMS0Uh2OSizx7IxL91Aq8hKng+ULA6+61GJYQI40kGEIMo+KyivHAIZikYl8gy96IRJzUAv/DJBtvB7zudpvjEcJ2kmAIMcSKyyoKgWOAI4DdGdoqmMJ+S4HHgIcDXreU6xYjliQYQgyR4rKK3YHTMYlFts3hCHt8i2nVeCTgdS+2OxghhpMkGELEkdVaUQqcBjhtDkckDg28DzyMSTYabI5HiCEnCYYQcVBcVrEjcDZwJNJaIXpXA9wJ/DPgda+wOxghhookGEIMUHFZRSYmoTgP2MHmcETyacV0n9wY8Lq/tTsYIeJNEgwh+qm4rGICcKZ12cDmcETy08ArwD8CXvcbdgcjRLxIgiFEjIrLKmYClwPHI90gYmh8BdwIPBHwuoN2ByPEYEiCIUQfissqpgF/BU4BMm0OR4wMS4BbgbsDXvc6u4MRYiAkwRCiB8VlFZOAy4AzkBYLYY9a4B7gZlnlVSQbSTCE6MaaanoJcA5SvlskhkbgZsAb8Lrr7Q5GiFhIgiGExVob5ELgAmC0zeEIEc1KwAPcI6u6ikQnCYYY8ayVTM8FLgYKbQ5HiFh8B/w54HW/aHcgQvREEgwxYhWXVWRjpppeCkyyORwhBuJN4E8Br/sruwMRojtJMMSIVFxWcQRwEzDd7liEGCQNPARcHvC6f7E7GCHCJMEQI0pxWcWGwG3AgXbHIkScNdE5EFSmtgrbSYIhRoTisooM4HzMALl8W4MRYmitAv6OqaEhxbqEbSTBECmvuKxiB+AuYCubQxFiOH0FnBzwuufZHYgYmSTBECnLmnZ6DfAHIM3mcISwQxtwJXCttGaI4SYJhkhJ1iDOW5HFyIQAac0QNpAEQ6QUGcQpRI+kNUMMK0kwREqQQZxCxOxLTGuGz+5ARGqTBEMkveKyihnA48AOdsciRJJoBa5CWjPEEJIEQyS14rKK3wL/ARx2xyJEEpLWDDFkJMEQSckq830jcJbdsQiR5FoxYzO80poh4kkSDJF0issqZgNPAlvbHYsQKeRT4IiA173E7kBEapDaACKpFJdVHINp1pXkQoj42gH4orisYk+7AxGpQVowRFIoLqvIAf4JnGZ3LEKkuCBwScDrvtnuQERykwRDJLzisopNgKcAl92xCDGCPAb8PuB1N9odiEhO0kUiElpxWcWJwBdIciHEcDsW+Ki4rGKm3YGI5CQtGCIhFZdV5GEqcp5idyxCjHA1wHEBr3uu3YGI5CIJhkg4xWUVk4AXge3sjkUIAUA7cAVwdcDrlpOGiIkkGCKhWOMtXgZm2B2LEGI9zwKlAa+7zu5AROKTBEMkjOKyil2B54FCu2MRQvToe+CwgNfttzsQkdhkkKdICFbJ79eR5EKIRLcJ8ElxWcUcuwMRiU0SDGG74rKK8zGVOXNsDkUIEZtRwPPFZRVH2R2ISFzSRSJsU1xWoYCbMMusCyGSTztwRsDrvtfuQETikQRD2MKqzPkQcITdsQghBu2SgNd9g91BiMQiCYYYdsVlFYWYwZy72h2LECJurg143ZfZHYRIHJJgiGFVXFZRDMzFDBQTQqSWO4CzpFaGAEkwxDAqLqvYGlPjYpLdsQghhsyjmFoZQbsDEfaSBEMMi+Kyii2At5BpqEKMBC8CRwa87ma7AxH2kQRDDLnisgon8DYw0eZQhBDD5x3goIDXvc7uQIQ9JMEQQ6q4rGIW8C6wgd2xCCGG3RfAnIDXXWV3IGL4SYIhhkxxWcWGmOSiyO5YhBC28QN7BrzuVXYHIoaXVPIUQ6K4rGID4A0kuRBipHMCLxeXVYyyOxAxvCTBEHFXXFYxEZNczLI7FiFEQtgGeKa4rCLL7kDE8JEEQ8RVcVnFOMyiZSV2xyKESCj7AA8Vl1XIeWeEkD+0iJvisgoH8CrgsjsWIURCOgq41e4gxPCQBEPERXFZRQGmiNY2dscihEhoZxeXVfzF7iDE0JNZJGLQissqcjHJxR52xyKESBqnB7zue+wOQgwdSTDEoFj9qS8Av7E7FiFEUglhqn0+Y3cgYmhIF4kYrOuR5EII0X/pwKPFZRW72x2IGBrSgiEGrLis4iSg3O44hBBJrRbYPeB1z7M7EBFfkmCIASkuq9gRs9ZAtt2xCDEcQo21rH3vYRp/+Ajd1kz2BhuTO2sHsqc6SS8oRKVn0t60jlBTLW3VS2lZ7KN5sY9Q/RrGHXAuBVvsb/dTSGTLgV0CXnfA7kBE/EiCIfrNqtL5OTDF7liEGA6hhrWsePhigmuX9/ux2UVbMPnYa4YgqpTzI7BjwOuusTsQER8yBkP0S3FZRQ7wLJJciB7oYCtL7zmTUGOt3aHETfUb9xBcu5ysKRsx6fgbmHrmfYzd63eQlmFtoVBZuWQUTiN/0z0Zs+cpkJ6Byshi3K/PsjX2JLIRZkyGnJdSREbfmwjRxT3A9nYHIRJXzTvlBKt/iXqfDrWx/P5zaVuzpOO2ySfdTPaUjfp9nKqKm2mY/0ZM26blj2HqGfeSlpnTcVvL0krqPn+Oll++JdS0jvQ8BzkbbsHoHQ4na0Jxl5gbf/gQlZXLxCM8pOc5ABi9w2GEGmup++S/TDzSQ+7MbTses+opD4SCOHY/iczCqf1+biPYHOD/AKmTkQIkUxQxKy6ruBg4we44ROJqXuxj3efP93h/7cf/7ZJcDBfHjkd0SS7qvniBFY9cQmPle4TqqyHURmhdFQ3z32R5+fnUf/tWx7ahxjoItZFZOLUjuQjLnrYpAE0Lvui4rcH/Hk0LPidzQjGjdzh8iJ9ZSrqsuKziELuDEIMnLRgiJsVlFQcAXrvjEImrvaWRqpduAXoe1zV6u0MYve1BACy77xxC61YP+HiF+/+Bwn1O6/H+hsr3qX7lNtLzx1Kw1QEdtzcvmkfN63cDmtxZ2zN6p6PIHDOZtrXLqfv4KZp+/ow1L91ChmMyOdOcpOeOgrQM2qqX0d5cT1pOQce+Wpf/aK4oZb0GDdS8cTeoNMbNOQeVLh+xA6CAB4vLKnYIeN3f2x2MGDhpwRB9Ki6rKAEeQ94vohc1b95LqHZlr9ukZeeRllNgTtLWSXmg0jJzOvbV/aKy81j3+XMAjN7pCNIyOyc71bx9P6DJ3WgnJvz2byaJKBhLzrRNmXjEFeSV/AraQ9S8ficAKiOL3FnboVsbWfXM1bRVLaG9pYH6ea9S9+n/AMiduZ217wcINdQwapsDyd5gk0E9vxFuNGb11YI+txQJS9Jr0avisooxwHOAo49NxQjW9PNn1M971e4wOjT636VtzRLSCwoZFdF60bbmF1pX/Ahp6RTuczoqSpJTuN+ZNP38Ga0rf6ZlxU9kT57N2L1/T8tSPy2LfSz7zx+6bJ+/6Z7kztialqV+6r+eS/qoCYzZ/cQhf44jgBO4D7NAmkhC8o1U9Mgazf04sLHdsYjEFWpax5q5/wIgf/N9bY4GdHuItR88DsDonY5EZWR13Ne86BvAjJ3IcEyM+vj0PAe5s8w45qafPwMgc8xkJp94I7kb7wzpmWa7URMYs8fJjDvwQnQoyJq5twGawv3/QFpW7lA9vZHmyOKyCpmGk6SkBUP05k/Ar+0OQiS26ldvJ1RfTfroCRTuezoN81+3NZ4G/7sEq38hvWAco7ac0+W+1qrFAH12X+RM34zGyvdoW7Ww47bMMZOZeNjlaN2ODrZ16Xap/fS/tFUtIq/kV+TN3iGOz0YANxaXVXwY8Lq/sjsQ0T/SgiGiKi6rcGGmiwnRowb/uzRWvgcoxv3mfNKy82yNR7eHqP3QtF44dj4KlZHZ5f5QQzUAGY7Jve4nY4wp8xKMMghVqbQuyUXb2hXUfvgEaTkFFO57+qDiF1FlA08Wl1WMsjsQ0T/SgiHWU1xWkQU8hJQBF70I1ddQ/eodAIza9kByN9zS5oig4bu3CVYvJX3UBAq2XL80t25tBuizCyOcKLW3NPV5zOpX/o0OtlC43xmk548lWFfF2vcepjnwJTrYRtaUjXDsciw505wDeEbCMhtTg+cYuwMRsZMWDBHN3wH7zxYioa2Z+0/am9eRUTiVMXucbHc4XVsvdjkKlZ4ZZaPYlkbo3Kz37eu/fYvmwFdkF21BwRb701aznOUPnk/D/NcJ1VfT3ryO5oVfsvKxMhq//7Afz0ZEcXRxWcWZdgchYicJhuiiuKxiV+ASu+MQiW3dN6+YAZAqjfHuC7t0Gdil4du3CNYsJ330RApc0QebqixTbKu9rbnXfenWRgDSsnru8gk111Pz5n+6lANf8/KttDesJW+T3Zh65n+Yds4jOH51ArSHqHr5VkLN9QN5aqLTzcVlFZvaHYSIjSQYooM157wceV+IXgRrV1Lz5r0AjNrGTWbhVNqb6zsuYe2tTbQ316NDwSGPybRePAFYYy+itV4A6QXjAAjV9V7gK7yoWfqocT1us/at+2hvXItjl2PILJxKsK6KliXzyRgzmfEH/YkMxyTS8xyM2eUY8jbdA93S0DErRQxYDnCvrFeSHGQMhoh0IzDL7iBE4tJaU/XSLehWMzZh3RcvsO6LF6Juu+yu3wMw4bDLydt45yGNq2H+GwTXLifDManH1guArPFFALSs+LHX/TX/8p3ZfuKM6PcvmU/9vNe6lAMPWklL1sSZ61XwzN6ghMbv3ukzsREx2Rk4C/iX3YGI3kkWKAAoLqv4DSBD4EWv1n3+HC2LfXaH0UWX1otdju61PHeONRC1ZfH8Hld7DTWt62hpCNfD6HK8UBvVr/wblOpSDjw9fwwArasWrNdq02olNOn5Y/vxzEQvrikuqyiyOwjRO2nBEBSXVYwD/mN3HCLxjd7+UEZvf2iv2yy67kAApp3zyHqLgw2Fet/rBGtXkjFmMvmb79PrtpnjppE1eSNaV/zI2nfKGXfAuettU/Pmf9CtTWROnEH2lPVrzIUXbBu17UFd6mlkjp1C1qRZtK78maqKmxi758mozBzqv3mVhvlvoTKyyZ213eCfsAAoAO4CDuhrQ2EfSTAEwJ1A74UBhLDJmldvp2H+m+QUb8WEQ8q6tFDoUJDaj54EwLHLMai09D73N3bPU1j5+OXUz3sVHWxl1HaHkDF6PMG1K6n79Gkaf/gQVBqF+60/YaGteim1Hz1plQM/ab37C+ecw8rHLqXR/y6N/ne7Hnef06QFI77mFJdVnBDwuh+2OxARnSQYI1xxWcXxwBF2xyFENKGmddR/9RIATT9+TOvqANmTZ3fcX+97nVDtSjLGTiF/s71i2mfOhlswdt/TqXnjHhq+e5uG797uukF6BuMOOI+caZut99g1r/wbQm09lgPPnjybySfcQM2b/6F58TxoD5E5oZgxux0/5ONQRqhbissqXgl43TK4JQFJgjGCFZdVTANuszsOIXqSnjuKgq3dNMx/nZwNtyJrQnHHfTrURu1H4bEXx8bUehE2etuDyJ48m7pPn6F56Xe0N9eTnjeWnA23ZPSOh3cMBo1U73udlsXz+iwHnjWhmElHX4luD0F7+3rVREVcjQNuBY6zOxCxPqVjLDwjUk9xWcWzwCF2xyHEQLSt+YWVT/wVlZnFBr+7vV8Jhkg5Bwa87gq7gxBdSYIxQhWXVRwAvGR3HEIMhg62Ely7kszx0+0ORdhrCbBZwOteZ3cgopNMUx2BrLVGbrU7DiEGS2VkSXIhAKYDXruDEF1JgjEyXQRsZHcQQggRR38oLqvYze4gRCfpIhlhrIGdlUC+3bEIIUScfQ9sGfC6W+wOREgLxkh0I5JcCCFS0yaYMuIiAUgLxghSXFYxBvgSiL7AghBCJL81wKyA1x29FrwYNtKCMYIEvO61gBO4DJB1o4UQqWgccLHdQQhpwRgZPI6HgAo8tY+Hbyouq5gCXAOUAsqu0IQQYgg0ALMDXvcKuwMZySTBSHUex6HAM9ZvHwDn46n9PHx3cVnFdpgpq7sMf3BCCDFkbg943TIew0aSYKQyjyMT+JauU1I1UA5ciqe2I7svLqs4FrgOM59cCCGSXRvgDHjdP9sdyEglYzBS21msX+9CAScDP+JxXIrHkQ0Q8Lofw4zA9gCNwxijEEIMhUzgKruDGMmkBSNVeRwOYAFQ2MeWC4E/4al9OnyDVSvjOmQBISFEctPAdgGv+0u7AxmJpAUjdZ1P38kFmCmr/8PjeAuPY0uAgNf9S8DrPh4zLuOzoQtRCCGGlAKutTuIkUpaMFKRxzEGCACOfj6yHbgX+Aue2tUAxWUVCjgR80+6QfyCFEKIYbN3wOt+y+4gRhppwUhNF9D/5ALM++F0zPiMi/A4MgNetw543Q8CGwNXA81xjFMIIYaDLIRmA2nBSDUex1hM68XoOOztR+AiPLUvhG8oLqsoBm4AjojD/oUQYrgcEfC6/2d3ECOJJBipxuO4EvhLnPf6KnABntrvwjcUl1XsjqmfsVWcjyWEEEPhe2CzgNcdsjuQkUK6SFKJx1EInDcEe94f+AaP41/WMQh43e8C2wKnAauG4JhCCBFPmwC/tTuIkUQSjNRyETBqiPadAZyNGZ9xDh5HRsDrbg943fdiam3cALQO0bGFECIehuILmOiBdJGkCo9jHKamxVAlGN19B1yIp/aV8A3FZRWzgX8AhwxTDEII0V/bB7zuz/veTAyWtGCkjvMYvuQCYFNgLh7Hi3gcGwMEvO6fAl73ocB+wPxhjEUIIWIlrRjDRFowUoHHkQMsBibYFEEbcBvwf3hq1wIUl1WkA2cA/4dZPlkIIRJBK7ChrLQ69KQFIzUcj33JBZia/xdgxmeciceRHvC6QwGv+3bM+IxbgaCN8QkhRFgW8Ae7gxgJpAUjFXgc8wCX3WFEmIdZFr6jcl5xWUUJcBNwgG1RCSGEsRIoCnjdMjB9CEmCkew8jn2A1+0OowfPYBZSWxC+obis4gBMolFiW1RCCAGlVpViMUSkiyT5nW93AL04DPgOj8OLxzEKIOB1v4xpbTkfqLExNiHEyCaDPYeYtGAkM49jNvADZsXARLcCuBx4AE9tO0BxWcU4zCDQM4B0G2MTQoxMvwp43e/bHUSqkhaM5HYuyZFcAEwG/gN8hsexG0DA614T8LrPwpQbT9RuHiFE6pJWjCEkLRjJyuNwAL8ABXaHMkBPAhfjqV0cvqG4rOIQTKGu2bZFJYQYSULAzIDXvbjPLUW/SQtG8ioleZMLgKOASjyO/8PjyAcIeN3PAZsBlwB1dgYnhBgR0oGz7A4iVUkLRrLyOL4idVYyXQqUAY/gqdUAxWUVE4GrgVORRFgIMXRqgCkBr7vF7kBSjXxwJyOPYwtSJ7kAmAo8BHyEx7EjQMDrXhXwuk8DtgPetTM4IURKGwvMsTuIVCQJRnI62e4AhsiOmCTjITyOqQABr/urgNe9B3AkELAzOCFEyjra7gBSkXSRJBuPIwPTpTDR7lCGWANwHfAPPLVNAMVlFTnAhcClJPf4EyFEYqkHJga87ia7A0kl0oKRfA4g9ZMLgHxMjYxKPI6jAQJed3PA674G2BgoByQ7FkLEQwHgtjuIVCMJRvI52e4AhlkR8Dgex3t4HNsABLzu5QGv+2TCXSpCCDF40k0SZ9JFkkw8jnHAMsxqgCNRO/AAcBme2pXhG4vLKo7DdKdMsykuIUTya8J0k9TbHUiqkBaM5HIsIze5APN+PRWzLPyf8TiyAQJe96PAJsDfMR8SQgjRX7nAQXYHkUokwUguJ9kdQIIYBXgxC6kdBhDwuhsDXrcHk2g8ZmNsQojkJd0kcSRdJMnC45gOSDnb6N4CzsdTOy98Q3FZxS7ArZg6GkIIEYsWYFLA6661O5BUIC0YyeNQuwNIYHsBX+Jx3InHMR4g4HV/COyAGRS73MbYhBDJIxs4xO4gUoUkGMnjULsDSHDpmGXff8LjuBCPIzPgdeuA112OmdZ6LebbiRBC9Ea6SeJEukiSgcdRCKwEMuwOJYn8AFyIp7YifENxWcUM4Abgt7ZFJYRIdG2YbpIauwNJdtKCkRwORJKL/toYeBGPYy4ehxMg4HUvDHjdRwB7At/YGZwQImFlAofZHUQqkAQjORxqdwBJ7NfAPDyOf+JxjAUIeN3vANsApwOr7AxOCJGQjrQ7gFQgXSSJzuPIBaqAPLtDSQHVwBXAnXhqgwDFZRWjgb8C5zKya4wIITo1AGMDXneb3YEkM2nBSHz7IclFvBQC/wK+wePYHyDgddcFvO6Lgc2A5+0MTgiRMPKB7e0OItlJgpH4ZMpU/G0KvILH8QIex0YAAa/7p4DXfQiwP/CtrdEJIRLBnnYHkOwkwUh8B9gdQAo7EPgWj+NGPA4HQMDrfg3YEjgbWGNncEIIW+1ldwDJTsZgJDKPYxOg0u4wRojVwF+Ae/HUtgMUl1WMBTzAH5FZPEKMNI3AGBmHMXDSgpHYJIMePhOAuzAVQfcECHjdNQGv+zxgC2CujbEJIYZfHqYasBggSTASmyQYw29L4C08jv/hccwACHjd/oDXfQDgBr63NTohxHDa0+4AkpkkGIltT7sDGMEOB/x4HNficRQABLzulwAXcAGw1sbYhBDDQ77kDYKMwUhUHsdmwHy7wxAArAAuAx7AU6sBissqxgNXAqdh1kERQqSeRkw9jFa7A0lG0oKRuCRzThyTgfuAz/A4dgUIeN1VAa/7D8DWwJt2BieEGDIyDmMQJMFIXJJgJJ5tgffxOB7H45gOEPC6fQGvex/M2gU/2xqdEGIoyGfxAEmCkYg8DgXsYXcYokdHA9/jcfwdjyMPIOB1P4sp4PVnYJ2NsQkh4mtPuwNIVjIGIxF5HC5gnt1hiJj8ApQBj0aMz5gEXA2cgiTxQiS7Jkw9DBmH0U/y4ZeYpAZ+8pgGPAx8iMexA0DA614Z8Lp/j/k7vmdncEKIQcsFdrQ7iGQkCUZi2tbuAES/7QR8jMfxIB7HBgABr/vLgNe9O3AUsMjW6IQQg7GN3QEkI0kwEpO8mZOTAk4EfsDjuByPIwcg4HU/BZRgloVvsDE+IcTAbGp3AMlIEoxE43GkY6pJiuSVD1yFKdR1JEDA624OeN1XARsDDwEy+EmI5LGZ3QEkI0kwEo8T0+cnkl8x8CQexzt4HFsDBLzuZQGv+yRgZ+BjO4MTQsRMWjAGQBKMxCPdI6lnd+BzPI578TgmAQS87k+AXYATgKV2BieE6NPY4rKKKXYHkWwkwUg8kmCkpjTgd8CPeByX4HFkBbxuHfC6H8F0m/wfZjqcECIxSStGP0mCkXgkwUhto4DrgO/wOA4FCHjdjQGv+wrMQNAnbIxNCNEzGYfRT1JoK5GYCp51QIHdoYhh8yZwPp5aX/iG4rKK3YBbkOnKQiSSuwJe95l2B5FMpAUjscxEkouRZm/gKzyO2/E4xgMEvO73MUW6TsWs5CqEsJ+0YPSTJBiJZSO7AxC2SAf+gBmfcT4eR6Y1PuN+zPgML9Bia4RCCBmD0U8JlWAopRxKqajNwkqpTZRSpyilfq2UStU6EbPtDkDYagxwM+DD4/gNQMDrXhfwui/FfLg9bWNsQox0hcVlFZPtDiKZJFSCgakN8LlSqlIptWe3+8YD9wFzgV0BlFKFSqnRQxmQUipHKTVrKI8RQRIMAbAJUIHH8TIeRwlAwOteEPC6f4tZOvobW6MTYuSSVox+SLQEI7xEeSPwQbf7qiOuVyilJgPvAF8opbbubadKqTSlVHYP92UrpSZaLSS7KqWOVkqVKaXuV0p9AdQCHyil8gb2lPpFEgwRaQ6mNeNWPI6xAAGv+23MTKMzgNU2xibESCTjMPohw+4AunFbP6/SWrd1uy9yDYdqYAom/tnAh0qpk7XWPU3xywIWKKUm0NmXrYAcYkuyJgF/wyzLPZQkwRDdZQDnAsfjcVwB3Bnw1oaAu4vLKp7AvC/PATJtjFGIkUJaMPohYaapKqU2Bb4FlgFFWutQt/tnAAuAoNY607ptDPAspuWjAZiptV7Vw/6vAC4CWjEFjZqsx9RjZm5sBXwPPIoZub/S+lllbZuttV4Yr+e7Ho8jzTpO1pAdQ6SC+cAFeGpfD99QXFaxMXAjcKBtUQkxMrwV8Lr3tjuIZJFICcaVwF+Ad7TWe0a5fyPgB2C11npixO25wAvAv7XWzwzw2EcATwFPaK2PGcg+Bs3jKAaGLoERqeZ54CI8tT+Fbyguq9gfM0hUvmUJMTS+C3jd0k0So4RIMJRSBUAAGIcZV/FrTLfESq11i7VNuIWjUmvt7Pb4NMzqlGOBCVrr7yPuqwWCmHEdLZgWjJB1CXNgFqZaCyzCdJsozPTBDOuShVmErEFrXRSv597B49gXeC3u+xV9qmps569vtvB0ZZCGVs2O09I5cKMMdi3KYEqBIjsD1jRqVjdqfljTztuBEG8Hgixdp/nPwTmcurVtjU6twD+BK/HU1gEUl1VkAGcCfwcK7QpMiBS1OuB1T+x7MwGJk2BcjlneGkyCcSbgt35vw3QdaEwiEMQMvIwMPBOzRHYGJgHoKFallGoGsq39NGI+lMPjO7Iws1OC1mPbrH3VW9umW9tkWvtQmKQn/lOVPI4zgTvivl/Rq1UN7ezynwZ+run//8Fexem8WZo/BFH12ypM699/8NS2AxSXVRQCHkx9jUQbayVEsmoHMgNed7vdgSQD22eRKKXGAhf2skkmZv2G8CwOhUkmxmNaLPKt+3r6EJ0MZGqts7TWY7TWE7XWUzFjLhZikpVLrW2fAT7EJDQHaK3Ha61Ha61ztdZpmCSjZGDPtE/Th2i/ohfnz23m5xrN9huk8cGpeQTOK+DG/bPJtP4zFFCQBSXj0zjelcn1+2aTlQ45GXDXgTm2xh5hInA38AUexx4AAa+7OuB1nwtsCbxiZ3BCpJA0TEu7iEEifLO5G9OU+x2dfccBwAmsAdZprZuVUicADwEPAA8DbwFva633BVBKpQMT6PbH11qv7X5ApdRMTD2N2cBRmPMImFaRUuAL4G2l1CXA3VrrdmtfrZgWkKGQUEsB7/tgA28s7OxFeurIXI7YtOeJCvNXhfjHh628uTDIinrNqGzFjlPTOW/HLH49e2Bvs6+Wh/jHRy28HQixukEzIV+xz4wMLt0tC+eE9B4f9/EvQW7+uJX3FoWobjKP23tGBn/aOQvXpM7HtYY0T/uDFGRBxXF5TMg3WcWFO2ezqkFz3QetvHx8Xpf43Y820hqCa/bOZqNxPcdgk62At/E4/gdcjKd2YcDr/g6YU1xW4QZuwlQGFUIM3ARkinhMbG3BUEr9DjgC0yVxZfh2rXWz1rpSa71aa91s3Rz+hv9LtH1prUNa6xVa62/7OObxwJeYstyXaa3/S2eilaG1/gn4LaZ75A7gE6XUMT3V0YijhKkQ99A3rV2Si768+EMb29zVQPk3bSyp07S1Q3WT5uWfgsx5pJHz5zbT36642z5tZft7GnjUF2TZOrPPZes0D81rY+u7Gvjfd91nMRv/+qSVXe9r5Mlvgyyv17SE4Jc6zYPftLHdPQ08PK8zP6xqNPdvMi6tI7kI263IJA8v/xTsuO3Jb9t46ccgW0xK40+7JPRkn98CfjyOa/A4CgACXncFsDlmJlWtncEJkeQm2B1AsrC7i2Rn6+e19L2oU7H1c9FADqSUmqGUegrT+uEA/qy19lp350X+1Fq/DuyHGfS5HfAYsFwp9ahS6oKeypkPUsIkGIc7M6n58yhq/jyKXaf3/i39+6oQRzzZRFs7/GajDN49OY/lFxXw3R/zuXrvbHIy4NZPWrnj8+gJQTQvfN/GuS83E9JQumUmX5yez8o/FfD+KXn8elY6LSE44ZkmfCu7JkFvLQxy3txm2jUcuHEGH5xqYnn/lDwO3DiD1hCc8lwzHy4xSUNhriIzDX6sbmdtc9cE6LOlZt9pVttWbbPmvLnNpCm456BcMtMVCS4b0/X3Ax5HKR6HCnjdbQGv+yZMcn0XXQc6CyFiIwlGjOxOMM7CdFXcGMO24fVHvuvPAZRSJUqp2zE1Lo7AFOk6WGt9fcRmS4ByIqqHaq0/BLbATF8FM97jWEwz8zb9iSFGCZNg5GcpxuSYS0Yf75CbPmqlJQQHzM7ghWNz+dWGGUwuSMM5IZ3LfpXNDfuZcQr/+jT2nqVLXm9BA5fsksUDh+ayzZR0JuansWtRBi8fn8fhzgyag/C3t1u6Pa4ZDRyySQbPH5PLLtNNLLsWZfDCsXkcvVkGwXY452XTKJaTofjNRhnUtcBhTzTiXx2itllz31etXP+hifcAq3uk7PVmVtRrztkhix2mJlzXSG+mYLoVP8Hj2AUg4HWvtpad3gbT1SiEiJ0kGDGyNcGwpqAeGJ6K2hOlVAbmZK/pR4KhlLoUMxvlD5jBoq8DPwJ3KqW+V0rNV0rNxyQN2wHHKqW+tdZCWQIcr7U+ClPI60XMN76FwL39fKqxSMo37dX7ZLP8ogKePjqXNLX+t/pwC8DCmtgGXS+oaaeyqp3cDLhiz/V7pZRSXL+vSVrm/hSkLWRaHr6vCvH5snYy0uDWOTmoKLH864Ac8jPhy+XtfLHMfHm/+dc5TMhTvB0IsentDYy5bh2/e76Z5iAc78pkv1kZfLQkyF1ftDF9tOKqvYe6p2zIbA98gMfxKB7HdICA1z3PKhp0OKaInRCib0n5WW0Hu1sw6F6xswe7YWpQzNNar+vH7q8H3sNUPzxKa70fpjLnBpjBbptFuWyKWWxqGvCRFeO7WuuDrNtO0PGe2+txOEiMAbf9Nj4vjckFaeRkmBO61po1je18tCTIha80c8ErprVgVmFsb7UV9SYRme5IIy8zejfErMI0MtOgOWjGUQAdY0Z2K0pnwzHRjzUhP40DNzYvc8WPpptkxtg0Pv59PoeVZJBtNUxMH63w7pPNg4fl0BbSnP6iaRm53Z1DQVbCd4305VigEo/Dg8eRBxDwup/BvO/LgP78fwkxEkmCEaNkOamFSyC/3Z8Haa1DSqkDMTNRwknBBcDpmIFur2HGgexqdYmEK4PWYZKvL7rtbwV9jxUZiPFDsE9b3PpJKxe8sn6D1IU7xTYockyOOYEvrWunJajJzlj/hL64tp02q0HEYW3/7SqTYOzUR/fFr4oyeOLbIN9EjN+YOTaNp4/Oo11rWoKQG5HYXPdhC/NXtXP0ZhkcuHHKLPeRB1wB/A6P4894ah8NeN0twHXFZRXlwNXAySTAFxAhEpAkGDFK+A8QpVQmcKL169P9fbzWui6yxUFr/aPWehlmuml4WuxPEQ/ZFpN4fae1rrdiSLOWhh+qhCxl51Ur4Oq9s/ndNrElGCXj0xifp2hogxs+jD5u4/I3TQKz+cTOVo7l9eZPPGNs72/pcEvKktr1u2zSlOqSXCyoaefKd1sYm2O6XVLQNOARPI4P8Ti2Bwh43SsCXvfvgB2A922NTojEJJU8Y5TwCQYmuZiImT3S6weeUmpWP6aTHoqZTfJdtwXSdrR+bq6U0kopjRl7EaCzXka8pUyCceZ2WSw6v4A3T8rjwp2yyM2ET5aGOro++pKmVEdrx9/eauGCuc0srGmnLaT5dlWIo//byMPzzIyU4zbvbFGobzUJxqg+ujAc1rujrtdRP8YfKppoCsI/9s9hUkEav9S1c8pzTWxw4zrGXb+OOQ83dMxISXI7YwaBluNxTAEIeN1fBLzuXwHHAIttjU6IxCItGDFKpARjvVisNUr+bv16a7jgVS8OB95RSv26t42UUtMwAzsB/tPt7umYMRvfWJdq6/Y3oiwhHy+jh2i/wy4nQ1HkSGOvGRnc+Oscvjg9n4+WhPj1w42sa4lt6Molu2ZxyCYZaOCWT1qZ+c96sq5ax+Z3NPDkt+aEPiYH/rh9Z6tIeM9RxnZ2obv97Mkj89p49ecQexWnc+rWWfxc3c52dzfwwNdtLK/XVDdpXvk5xB4PNPK0f6jeFsNKASdhprVehseRAxDwup/AVK/9G2b1YSFGOkkwYpRICUZulNtuwzTj/oKp+Nld99PJFpgWiLJoB1DG4cCn1n7n0W39D631+Vprl9Z6K631VnSOrh/KcstJOzWhLyXj0/n7ntnMW9nOrZ/ENlU1PU3xv6NyuXVONiXjzVs0Iw1yIzqort47p2P8BdAx+DLcktGTcMvF6F5e8ZomzYWvNncpB/6755tY2aA5ctMMFp5XwOqLC7hyr2yC7XDqc03UNNm/pk+cFGDGYPjxOI4ACHjdTQGv+0rM4OeH6Ts/EyKVjbE7gGSRSAlGl05updQ1mLLdABdqrSO/PYVbMmYqpSYopdKt1Vbd1u1PR+ynSCk1Ryl1LVAJ/A9TG8CHmSLb1O24Y5VSmyqlXEopD2b6KgztSqcp2cEftkexGXj5VA/VN6NJT1Ocu2M2/rMKaP3LKJZdWMDobJNE7DwtnTO36zrgcoMCc9/iKGMrIv1cbe6fNrrnt/7FrzWzqkHz191NOfBf6tp5Z1GImWMVjxyeS/GYNMbnpfGX3bM5zpVBbQtU/JgSrRiRioGn8DjexuPYCiDgdS8NeN0nArsAn9gYmxB2SpnR3kMtkRKMjhYMpdRVdC5A9pDW+qlu21ZZP4sxK0kGMUu5j8XMAHkkYtsTgJcxrRobY2aPXAHsoLVeEiWOPOBrTOvGFdZtr2qtfx7Ik4pRUiYYc38KsucDDZz5YlOv27VaEzaW1g3si29muuLPr7ewskGTkwH3H5KzXs2NzSaaJObzZb0nGO9bYya2nBT9rf/eoiD3fdWGa2IaF1vlwMNJy9aT09er4LnzNNOssqQ2Zb/U74FZRO0ePI6JAAGv+2PMuI0TgaV2BieEDRLpvJnQEumFGhNx/Vngc8w00TO7b6i1/g64BVP0ag1QAyzHDAI9WGtdHbHtNcDzmC6O04CpWuv/i1jjpPu+l2K6UBowYzH+gVnbYSglZRfJ7MI03lkU4u4v2li0tucT+6s/m5P6tNEDGyP75sIg939tWgj+b89sNhm//lTUfWaY294OBKlqjB5LdZPmxR9MLO6N1v8S0hrSnPFiM0rBPQfldCQTk6x1Sr5aEeoo7BX2mVWwa3JB0tfH6E0a8HvgRzyOi/E4sgJetw543Q9juk2uxKxALMSIUFxWkVTlfO2SSAlGx8AZrfXnwO6YJdMbo22stb5Aaz3TWlK9UGu9gdb6V1rrd6Jse4jWeo7W+t5uXS092V1rXWCNxbg4PF11CCVlC8bswjR23zAdDZw7N2q+xvdVIbzvm4EPv3X2v2Wxqc2c9AF2nJrOhTtHn+66yfh0ttsgjaYgXPp69CkiF73aTH2rab3YPkq9DO/7rfir2jl7+yx2nNY54GNWYRpbT05jQY3mpGebWFzbzprGdq57v4WHvmkjN8OswzICjMYUr/sWj+NggIDX3RDwuv+GWf34STuDE2IYjYh/+MFKmARDa32F1lpprfe0fm/SWtuyJG4Ms1XiLSkTDIDr980mXcHz3weZ83ADby4MsrSunZ+r2/nnJy3scl8jNc2w8bi09ZKDP1Y0UXBNHYc90bhey0CY5+0WfqpuJzvddI2kp/XcUnD9vjko4N6v2jjh6SY+XxZiZX07H/8S5IgnG3ng6zbSFdz2m/Vf7h/WhLjmvRamj1Zcvc/6DUr3HpxLQRY8Pj/IhrfUM/6GesreMGum3DrHTGMdQWYDz+FxvIbHsTlAwOteFPC6j8Z8MfjS1uiEGHrSghGDEfWpmMCSsosEYMdpGdx7cA6ZafDKzyH2ebCRaTfXM/tf9Zw3t4XqJo1rYhqvnpBHfkSNiuomzR2ft9HQBs9WBvGtWj+n+3pFiJs+NjNPPHtm45zQ+//0XjMyuHVODmkKHvG1sf09DUy+sZ6d/9PI//xBstKh/NBcdita/8vHmS820xLquRz4NlPS+fDUfPafld6xAJxrYhrPHJ3Ladsm9NLtQ2lf4Gs8jn/jcYwDCHjd72HWPfkdsNLO4IQYQtKCEQN5kRJD0rZgAJy8VRZbT07nxo9aeXNhkJUNmoIscE1M55jNM/nd1pnrlfwuzFX8cbtMHvimjX1nZuCa2DXXDbVrfv98E8F22H6DzgGXfTlnxyy22yCNGz9q5f3FIWqaNZPyFfvMzODiXbLYNEqS8sDXrbwVCHFUH+XAXZPSeeWEfELtmmA7UcuYj0DpwB+BY/E4/g78O+CtDQL3FZdVPAVchhkQKkQqSdlR3fGk4r1ulxgAj+MezCA6Yalr0ZzyXBMv/hDky9PzO2aJiIRXCVyIp/ZluwMRQthLukgSg2R53YzOVvzvqDzmnSnJRZLZBPgzHsdmdgcihLCXJBiJIbYSlyNQtCmpIiH9APwVmIGndk/XjKIYVnsRQqQyGYORGCTBEMmoGngCeBBP7ceuctcU4HjKXScC9wG3+kuchcBHSHllkVquclb6/2V3EIlOEozEIN/2RLJoA14CHgRedM0oSgcOo9zlwcwqSceUEQ9/+N6MqaArRCpJ6oH5w0USjMQgLRgi0X2GSSoec80oqsaUEL8TOAIYFbFdG/B7X6mv3V/i/DVmhVYhUk3I7gCSgSQYiUESDJGIlmBWT30QT22lq9y1MXABZn2fDXt4zLW+Ut98f4kzH7hrmOIUYrgNdzHGpCQJRmKQBEMkinrMisMPAm+5ZhSNBY6h3PUAsGMfj/0Os9Q71s+ekhAhkp20YMRAEozEIGMwhJ3agTcwScXTrhlFbYAbk2i4gViqnLVjukZa/SXOHYFzhipYIRKAJBgxkAQjMUgLhrDDfOAh4GE8tctc5a4dMIuZHQOM6+e+bveV+j7ylzgzgXuRKfAitUVf3VF0IQlGYpAWDDFcVgGPYsZVfOUqd00HTramlpYMcJ+LgUut65cCmw8+TCESWo3dASQDSTASw1q7AxAprRl4AdMFMtc1oygHOIJy143AnsBgF1U501fqq/eXOJ3A5YPclxDJQBKMGEiCkRiq7A5ApKT3MUnFU64ZRXWYOhUPAIcBeXE6xqO+Ut/L/hJnGqZrZMQuLStGFEkwYiAJRmJYbXcAImX8jBlX8RCe2gWuctfmmFaF44AN4nysKuA86/ofgV3ivH8hElW13QEkA0kwEoO0YIjBWAs8iRlX8YGr3DURU7L7JGCrITzu+b5SX5W/xDkduHYIjyNEopEWjBhIgpEYqjHT/GTkvYhVEJiL6QJ53jWjSAEHU+56Efg1Q/+//bKv1PeIdf1OoGCIjydEogg6K/31dgeRDOSElgg8te1IRixi8yVwPjAVT+1BrhlFK1wziv4FLMcsPOZm6JOLeuBMAH+J8zjgN0N8PCESiXxWx0haMBLHavpfe0CMDEuBRzBdIN+6yl2zgLMod50AzLQhnst8pb7F/hLneOBWG44vhJ1k/EWMJMFIHDIOQ0RqAJ7BdIG84ZpRNBo4mnLX3dg7mPIj4N/W9VuA8faFIoQtpAUjRpJgJA5JMEQ78DYmqfifa0ZRM3AApuvjICDbvtAAU3E2vFLqHOB4m+MRwg6SYMRIEozEscruAIRtKjFJxcN4ape4yl3bYhYLOxaYYGtkXV3jK/V95y9xFiArpYqRS7pIYiQJRuII2B2AGFZVwOOYcRWfucpdU4ETrJLdm9kbWlTf0jkV9RqgyMZYhLCT1C2KkSQYiWOB3QGIIdcKvIhprXjJNaMoCzicctc1wN4k7qyuyJVSdwbOsjsgIWwkn9UxkgQjcfxsdwBiyHyMSSqecM0oWgvshSmrfTjJUT/iNl+p72N/iTMLWSlVCEkwYiQJRuKQN21qCQAPY7pAfnSVu0qAizEDI6fbGVg/LQIus65fBmxqYyxCJAL5MhgjpbW2OwYR5nHUAGPsDkMMWB3wX0xrxbuuGUXjMAM1TwK2szOwQZjjK/W94i9xboYp8iWLmYmRTAO5zkp/i92BJANpwUgsC4Bt7A5C9EsIeA2TVDzrmlEUwkwpfRYzxTTTvtAG7WEruZCVUoUwlkpyETtJMBKLJBjJYx4mqXgET+0KV7lrZ+Am4Cig0NbI4mM1piQ5wNnATvaFIkTCkK7sfpAEI7FI315iWwE8ihlX8Y2r3FUMnGZNLd3I1sji7zxfqW+Nv8S5IWZaqhBCPqP7RRKMxCLZceJpAp7DtFa86ppRlA8cSbnrn8CvAGVncEOkwlfqe8y6fieQb2cwQiQQ+YzuB0kwEssPdgcgADOQ6z1MUvGUa0ZRA7A/ZlbIIUCujbENtXXAHwD8Jc4TgDn2hiNEQpEWjH6QBCOxfGN3ACPcj8BDwEN4agOuctcWwBXAccBkWyMbPpf6Sn1L/CXOCZjFzIQQnaQFox8kwUgkntoaPI5FwIZ2hzKC1GAWE3sQT+1HrnLXZOB4yl0nAVvYG9qw+wC43bp+KzDOxliESETSgtEPkmAknq+QBGOotQEvY7pAXnDNKEoHDqXc9TdgPyDdzuBs0oIpB679JU43pn6HEKJTtbPSL6te94MkGInnK+BQu4NIUZ9jkorHXDOK1gC7A3cARwCj7QwsAVztK/VV+kucozCviRCiqy/sDiDZSIKReL62O4AUswR4BNMF4neVuzYCzgNOAIrtDCyB+ACvdf1akquUuRDD5XO7A0g2kmAknq/sDiAF1ANPY1or3nLNKBoDHEO5635gRzsDS0DhlVLb/CXOXYA/2h2QEAlKEox+kgQj0Xhql+BxrEEG2PVXO/AGZhbI064ZRa3Ab4CngAORMtc9+aev1Pepv8SZjSkHnop1PYSIB0kw+kkSjMT0NbCP3UEkiW/pLNm91FXu2h7T3H8MMN7WyBJfAPiLdf1ywGlfKEIktFXOSv9iu4NINpJgJKavkASjN6uBxzDjKr5wlbumAydZJbvlJBm7032lvgZ/idMFlNkdjBAJTFovBkASjMT0id0BJKAW4HlMa8Vc14yiHOAIyl03AHsAaXYGl4TKfaW+1yJWSk3mVV+FGGqSYAyAJBiJ6R27A0ggH2CSiiddM4rqgH2BB4DDgDwb40pmq4ALrevnAjvYGIsQyUASjAFQWmu7YxDReBzfApvaHYZNFtBZsvtnV7lrM6AUU7J7qq2RpYZjfKW+J/wlzmJgPrKYmRB92cBZ6V9udxDJRlowEtc7jKwEoxZ4EjOu4n1XuWsicJxVsntre0NLKS/4Sn1PWNfvRpILIfqyTJKLgZEEI3G9g7WqZQoLAq9gukCed80o0sAhlLteBH6NvD/jrY7OlVJLMWXRhRC9+8zuAJKVfIAnrrftDmAIfYVJKh7FU7vKVe7aDfgncCQwxs7AUlyZr9S31F/inAjcZHcwQiSJD+0OIFlJgpGoPLUr8Ti+BzaxO5Q4WUZnye75rnLXTOCPlLtOAGbZG9qI8B5wp3X9n0ChjbEIkUxeszuAZCUJRmJ7h+ROMBqBZzCtFa+7ZhSNAo6m3HUnsKutkY0sLcBp1kqpBwFH2x2QEEliFbI+1IBJgpHY3gZOtzuIftKYuB8E/uuaUdQMzAEeBw4CcuwLbcS60lfq+95f4hwN3G53MEIkkdeclX6ZajlAkmAktrftDqAfvsckFQ/jqV3sKndtA1wFHAtMtDWykW0ecL113QtMszEWIZLNq3YHkMykDkai8zi+JHGnaa7BtEw8iKf2U1e5awPMMugnApvbGpkACAE7+Up9n/tLnL/CdLnJYmZCxG6Ks9K/wu4gkpW0YCS+50msBKMVqMC0VlS4ZhRlAodT7roKs36KlOxOHLdYyUU2cA+SXAjRH/MkuRgcSTAS33PAFXYHgVkf5UHgcdeMohpgL8xJ67dAgZ2BiagWAH+zrv+V5B4sLIQdpHtkkKSLJBl4HIuB6TYceRHwMKYL5AdXuasEOAk4HiiyIR4Ru319pb43/CXOLTDrKMhiZkL0z/7OSr9MUR0EacFIDs8DZw3TsdYB/8W0VrzjmlFUCBxLuethYPthikEMzv1WcpEO/AdJLoToryZM7RgxCJJgJIehTjBCwOuYpOIZ14yiEHAgpobFb5ATVDJZAVxkXT8f2M6+UIRIWu85K/3NdgeR7CTBSA5vY9aRGB3n/fowScUjeGqXu8pdOwE3YgoxSaXH5HSur9RX4y9xzgT+z+5ghEhSr9gdQCqQMRjJwuN4AjgqDntaCTyKGVfxtavctSFmWumJwMZx2L+IEFwXZNXTq6j9ohbdosmdmcuorUaRt1EeGY4M0jLTCNYHCa0L0bKihYbKBhoqGwjWBJl66lTG7j62P4d7zlfqOxTAX+J8HTOrRwjRfzOdlf6FdgeR7KQFI3k8z8ATjGbMbJQHgVdcM4rygCMpd90C7I5MXxwSwbogC65aQOuq1o7bGvwNNPgb+nxsvjO/v8lFLfBHAH+J8xQkuRBioD6W5CI+JMFIHi9i1pTIjnF7DbyPSSqecs0oqscsz/0QcCiQOwQxigjLH11O66pWcmfkMuW4KWSMzaDu8zpWPrUSHdKgIC07jcyxmeQU55AzPYdVT68CBRuUbtDfw/3ZV+pb5i9xTsJ0cwkhBuYxuwNIFZJgJAtPbS0ex4uYuhO9+QmTRDyEp3ahq9zlwtRBOA6YMsRRxmTh9Qtp+K7zW/z0s6bj2N7R4/ZtNW2sfnE19b562qrbSMtNI3dGLoV7FzJ6q4ENS2n4sYE1r6yh8cdGgvVB0vPTyd84n/EHjCdvVl6Pj2v8qZGqV6to/KGRUH2I9NHpFDgLGD9nPDnTO5dZaQ+2U/d5HWk5aWx4wYZkjDb/auPnjCdYF6TqpSo2vHBDRrlGdTwmcFMAHdRMOmIS2ZNjzSMBeBe427r+L6BfTR9CiA4h4Em7g0gVkmAkl0eInmDUYP4pHsRT+6Gr3DUJOJ5y10nAlsMZYF9qPqjpklz0pfGnRgI3Bmhvau+4LbQuRP28eurn1VO4dyEbnNS/b/vVb1Wz7MFlpo0nvM+6EHWf11H3RR2Tj5rM+APGr/e4Na+tYfmjy7s8LlgdZO0Ha6n9pJapp05lzC5jOmLUQU32tOyO5CIsb+M8eAnq59V3JBi1n9ZSP6+enOk5jJ+z/rF70Qz83lop9RDgyP48WAjRxVtSvTN+JMFILi9hkomxQBswF9MF8oJrRlEacAjlrr8A+wPptkXZC8d2jo5Wh0W3LKLxx8Yetw3WB1l0yyLam9rJ3iCbSUdOIndGLqGGEDXv1bDmlTVUv1lN5vhMJvxmQkzHr/fXdyQXY3YdQ+E+hWSNyyJYZxKFqleqWPHECrI3yGbUlqO6PC6cXIzachQTDpxA5oRMWle3UvViFeu+Wccv//mFrAlZ5G2UR3p+Oipd0bqylVBDiPT8zj9H08Imc8Uqqh5qDLH8keWma+SUDVAZ/RoS83dfqe9Hf4nTgayUKsRgSfdIHMm6EcnEU9uCWRHzPGCqa0bRIa4ZRatdM4pux9Q/eAw4gARNLsCMOUjPTzcn3D7efVUvVhGqD5E5PpOZl89k9NajyRyTSc7UHKYcM4UNTjQtF6ufW03b2raYjl9VUQUaxu45lmmnTSNvppnNkTM9h8nHTGbcr8cBsOb1NV0et/LJlSa52HoURecXkbdRHpljMsnfKJ8NL9gQxw4OCMGyh5eZ55mVRsEWBbQ3tbP4X4tpXtZMqDFEzbs1VL1UBdDRerHyqZUEa4OM23cceTN77p6J4mvgH9b164B+D9wQQnRoBZ62O4hUIi0YycZTe72r3LURcC5m5dJiewMaGlpr1n68FoBJv53UpQUgrHDvQmrer6FpQRO1H9VG7dbobtpp09Bak1EQ/a2vlGk9aF3dOfOjZXmLaXVIhynHT+nYJtKUE6aw7pt1NC9qpinQRG6xGdjZ+FMjDZUN/HTZT122d+zsoGDzAhp/aqT67WoyCzOZ+Nt+rWofwnSNBP0lzj2A0/vzYCHEel52VvrX2h1EKpEWjCTjKndlAB8CfyFFkwuAlmUtBNcGUVmK0dv2PJBz7G5mPOO6eeti2m+GI4PMMZkd3RC6XROsC1L/XT1L71tK1VzTupA1MavjMfXf1QOQv1E+WeOz1t8pkDE6o6NLZd03JpasCVnM+ussRm87uuN4mYWZTDpykkl0gpqlDywFDVNOmkJ6Tr8anm7ylfq+8Jc4c5CVUoWIB+keiTNpwUgyvlJf0FXuegTTTZKyWpa2AJAzPYe0rJ7z4LxNTJdC8+KBVfVd8dgK1rzWtTsEBeP372wNCceSO6v3mb15G+dR+2ltl1iyJmZRdE4Rul2jg7rLc1n90mpafmnBsYOjv7NhfqJzhd0rgI3682AhxHoagBfsDiLVSAtGcrrP7gCGWrA2CJhWgN6E7w81hGhvae9121ioDMXUU6dSsHnnCvQxx2K1erRVrz8eRKWpLslF66pWVj2/ivT8dKYc3+/Zw6f7Sn1N/hLnVsCf+vtgIcR6nnNW+nsecS4GRFowkpCv1DfPVe76AtjW7liGSqg5BEBaTu85cFpWGipDoYOaUFOItOz+5cyTjpjEuP3H0bK8hbrP61j7wVoafmhg9HajSc9N71cs6XnW9k2hPo+77MFl6FbN5BMmk+HIoK26jZVPr6R+fj26TZM7I5eJh0wkb6P1Bn3+x1fqe8taKfVe5H9YiHh40O4AUpF8OCWv+0jhBIP+LJEziOV00rLTyJqQRdaELEZtMYoxvxpD4IYAbdVtFF9UjErrx9CGGONY++Fa6ufXd5QDb1nVwsKrFhKsC3ZsUz+/nnp/PdP/MB3Hdh1FyJbT2WJxIan89xdi+PwIvGp3EKlIukiS16OYIkspKdxa0Fe3R3truym7DR0tDoORv1E+4/YdR8O3DdR+XGtiyY4tlnDLRW9xhBpCLH98OSpTdZQDX/qfpQTrgozefjQb37AxJf8qYeLhEyFk7gs1dLSInOMr9a31lzhnAX8f1BMVQoT921npl1U/h4AkGEnKV+pbSwrP2c4ckwlA25re61uEp5Om5aX1u3ukJ/mb5ANQ+1lt/2KxFjXLGNtzw+CKJ1YQqgsx4eAJZE/Opq26jcbvG8mckMn0M6aTNSGLjFEZTDx4Io6dHLQ3tYdnpTzjK/X9z9rN3chaMkLEQz1wv91BpCpJMJLbv+wOYKhkTzVrcTQvae5ooYim8QczLityHZCe1LxXw4JrF7DymZW9bqeD5nhtNW1dYmkKNPX6uHBV0p5iafi+gZr3asiels2EA0zl0XDSkrth7noVPPNmm/EXratbm4GzAPwlzt8Be/caiBAiVg85K/11dgeRqiTBSGK+Ut/HmBVTU072BtlkjMmgvamdel99j9ut/WAtQJey3j3JHJdJ4/eNrHllTa/dHfXfmuNljjUtFwWbmhklDZUNBNcFoz4mWB/sqH8RLZb2YDvLyk2Vz6mnTO1IJtIdpjulaVFTR2ITFi4p3ram7XFfqW+5v8Q5mc7KnUKIwbvN7gBSmSQYye86uwMYCkopxuw0BoCV/1tJe+v6CUHNezU0/tSIylKM2XlMn/vML8knc0Im7c3trHgq+npGDT80UPNuDQCjtzO1KbKnZJM7Ixfdqln5VPTWjxWPr6C9uZ2c6TlRy31XVVTRsqzFlAOPWK01e2I2ORvm0La6jV/u+YXWNa0E64OsrljN2g/XojJUe827NWXW5rcBfT9RIUQs3nRW+r+zO4hUJrNIkl8F8C2wmd2BxNv4A8dT834NzUuaWXjtQiYePpGc6TmEGkOs/XBtx5oeEw+e2NHaELbswWWs/WAt+ZvlU/THIlSGQqUpJh81mSX/XkL169WEGkIU7l1I1oQsQo0h6j6rY3XFanRQk7dxXpekZdJRkwhcH6Dm3Rra29oZv/94Mgutxc7mVlH3eR2kwZQT169p0bKihdUvrO6xHPjUU6ay0LuQ2k9qqf2ktst9WZOz/tq8pHmlv8R5GNFX0hVCDEzKdjEnCqW1DJ5Ndq5y18kk4UClBdcuoPH7RqafNR3H9o6o2zT+2Ejgpq7LtUcq3KewY9GzsGB9kMqzKzt+n+WZRW5x55jIVc+vYtUzq3qcVppfkk/ROUXrrX8Sbbn2sHCBrvBy7ZEWXreQBn8DRecX9Vixs3lJMyueWEG9vx5CkD0tG8d2jgdXPrOy1F/iHAN8B/S7IpcQIqpFwCxnpb/vojViwKQFIzU8AlwFTLU7kHjL2yiPja7eiNUvrmbdvHUE1wZJy00jb2YehXsXRh3vkFGQ0bEQWsFmBeRM6zrocuLBE8nfJJ81r66h4ccGs5x6bjo5G+YwdtexOHZyRK1/MW6/ceTOyKVqbhWNPzQSagyRMTqD/E3zGX/AeHKmrj+4s+a9Ghr8DYzeYXSv5cBzpudQ/KdiU1I8pEnLTPsSONW6+wYkuRAinu6Q5GLoSQtGinCVu/6EORGJ5BcEdvCV+r7ylzj3BN5EFjMTIl6agWnOSv+aPrcUgyKDPFPHXcBau4MQcXGjlVzkIiulChFvD0lyMTwkwUgRvlLfOuBOu+MQg/Yj4LGue4DZtkUiROppA66xO4iRQhKM1HIr0GJ3EGLANGal1GZ/iXNrzHojQoj4ecBZ6Q/YHcRIIQlGCvGV+lYAD9kdhxiwe32lvrf9Jc4M4D/IIGwh4qkVMxheDBNJMFLPDUDvq3KJRLQMuNi6fhGwtY2xCJGK7nNW+hfbHcRIIglGivGV+n4AnrM7DtFvZ/lKfbX+EudsOsdgCCHiowW42u4gRhppgk1NVwGHIrMPksX/fKW+Z/0lToWZNdL3ym0iJdUEg/yzqorX69fR2N7OFrm57JlfwNa5uUzIyCBLKdaGQtSEQgRaW/m0sZHPmhpZGQxy5eTJ/NYxxu6nkKjudVb6f7E7iJFGEowU5Cv1fekqdz0EnGR3LKJPNcDZ1vXfA3vaF4qw05pgkOMWL2JJW1vHbZ80NvJJY2Ofj90xL0+Si541IzNHbCFdJKnrMqDvTyZhtz/5Sn0r/CXODZBCaUOqOhhk/wU/2x1Gj7yrVrGkrQ1XTg6PFBXx2sxZXDJhYse3QAXkqTRmZmVx4KjRXDRhAplKka0UV0yabGfoie5uZ6V/md1BjETSgpGifKW+pa5y1w3AFXbHInr0hq/Ud591/d9A9AVZRrClbW3cV72G9xsaWBEMkq0Uzuxsjh4zlt+M7rn0ejSelStYEwwOKI61oRAHLlxAdaizuvQHs2YzNqP3j9Bvmpoor6nmi8YmattDFKans2NeHqcUFrJxdmdPWKvWvFa/jjyVxh1Tp1Fo7ffkwkKqQ0Hura7mrmnT2C2/oOMxZ/6yhDatOX/8BIqzsgb0vEaAJuBau4MYqaQFI7VdDyy1OwgRVRNwOoC/xPlbzJgZEcHX1MRhgYU8tnYtS9raaNOa+vZ2Pmtq4k/Ll3H+0qW0xbjUwfO1tbxeXz/gWP6xelWX5CIWD9dUc/ziRcxdt47VoSCtWrMiGOS5ujqOXLSI52s7V85da90/IyurI7kI2yY3D4D3Gho6bnu5ro53GxrYJDubUwoLB/y8RoA7nJX+FXYHMVJJgpHCfKW+RuByu+MQUf3NV+pb4C9xjgVuszuYRLM2FOL0X5ZQ397OVjm53D1tGm/PmsVLM2by14mTGJ2Wxqv167h19eo+97WirY1rVq0cVDx/njCRj2dvxMezN4pp+08aG7h21SragT3z83mkqIh3Zs3m4elF7JmfT5vW/GXFcr5qMr2YjrR0MoBFba3UdUtkfM1NQOeH9bpQiGtXrSQN+PukyWQqGcvdgzrgOruDGMkkwUh9DwJf2B2E6OJz4Gbr+j8A6UDv5sm1a6ltb2eT7Gzunz6d3fILmJiRSXFWFseOHYt3ygYAPFG7lmAvrRjaOpHXtQ+uNMyo9HRGW5dY3Lh6NRrYu6CAf0+dxta5eUzIyGCbvDxunzadA0aNIghcvdIkPtlpaexeUEB9ezvnLl3Kzy0trAuF+F/tWu6rrgbgV1b3yE2rV1MVCnH82LFskZs7qOeV4q50VvpX2R3ESCZjMFKcr9SnXeWuC4F37I5FAGal1N/7Sn0hf4lzbzqXZBcRjh4zhsMcDvLT0shOW/97UPg7e0N7OzWhEBN6GAvx+Nq1fBjDLIx4WtjawvzmZjKASydOQkVpYbh84iTerq/nu5YWvm1uZrOcHMomTOTrpiY+bWrkoMDCLtsfOGo0u+Tn83VTE0/WrmVyRgbnjp8wTM8oKf2AWTpB2EhaMEYAX6nvXeAZu+MQANzgK/V9Y62UerfdwSQqR3o6EzIyyItILupCIb5rbua2qtX8abmZFJCflkZhD60Ki1pb+cdq8wX20NHDN3724waT0GyTm8fUzMyo2xRmZLBngWmReMcaGzItK4vHijZk34ICsqykZHJGBheOn4B3yhTatOaKFSvQwN8mTSY/SuIlOlzkrPS39b2ZGErSgjFyXAy4ARlubp8fgP+zrv8fMMvGWJLK6+vWce6y9ccrnzh2LOlRWgjateay5ctp0prNsnM4Y9w4nq2rXW+7ofBTq1lvcIvc3uulbZubx8vr1vF9S3PHbdOzsvjn1Gm0a02r1uREJBH3rlnDj60tHDBqVEdyIqKa66z0v2h3EEJaMEYMX6nvZ2QwoZ00pmuk2V/i3Ba4wO6Akt2xY8Zw1rjxUe+7r7qar5qbyFaKa6dMIWMYx0GutqbCTsvsPZefnmVaN1ZEmTqbplSX5GJJayt3rqlidFoal06cFMdoU04b8r+VMKQFY2S5ElPdM/qnshhKd/tKfe9FrJQa22hBAcAeBQW8NXMWS9va+LCxgUdqavi+pYUlbW3r1YD4oaWZf62pAuC88ROYnZ3N0rbWYYu10RpQ2lcXxqg08xaoj2EA6v+tXEmz1lw+aRLjMzJY0dbGP6uq+KChgVbdjisnlz+MH8fW1pTWEewmZ6W/0u4ghCEtGCOIr9S3FllIyw5LgUus6xcDW9oYS1LKVIpJmZlsk5fH2eMn8PyMmVQHQ5y6ZDGrgp1d7W1aU7Z8OW1as11uLieNHTvssYbntPTVaKKtLfsq5fFCXS0fNDZ0lANf3NrKkYsCPFtXy+pQkNr2dt5vbKB08WJeW7du0PEnscV0dkGKBCAJxshzJ/Cp3UGMMH/0lfrq/CXOjYG/2R1MKpiQkUHZxImsCAb5V1VVx+23V1VR2dJCfloa10yeQpoNNSLCA1Mb+2iZCLdcFKT3/DFcGwpx/apVXcqB/3XFctaEQvx61ChemzmTD2bN5tzx4wkCf1mxnNp+FgRLIec5K/2yPEICkQRjhPGV+kJAKWYBIDH0nvSV+p6XlVLjb/s80x3wivWtfV5TE/dWrwHgj+PGMTo9nbpQiLpQiPpQ58k+fFsoxiqg/TXRmjK7PNj7JIYlreb+Sb2UG//H6lWsCYU4c9w4irOyWNHWxmdNTUzPzOT6KRswNTOLsRkZnDluPO5Ro1nX3t4xK2WEedFZ6X/W7iBEV5JgjEC+Ul8l8Be74xgBqoFzrOunA7vbGEvS8Dc3U7p4Eecs/QXdSxIQLhNe395OQ3uIS1csJ/zd/YbVq9nppx87LoctCgDQpHXHbT+0tAxJ/LOzsgGY39x7Dv+lVcVzk+zsqPd/3tjI07W1bJyVzamF44DOpMWZnbNeBc+trKJb0QaNprgm4Fy7gxDrkwRj5LoZeN/uIFLcRb5S3yp/iXMqZl0YEYOirCzmNTfzRn09XzQ19bjdB9baHKPS0rh1dRULW4dvIGdvdso3LSufNTZS08PJfm0oxNv1Jv498tefctqqNZ6VK1DA3yd3lgMfl25aO/wtzeutwzLfKik+PmPEjR8uc1b6F/a9mRhukmCMUL5SXztwCrKk+1B5zVfqe8C6fjvQv6U/R7D8tDTmjBoFwHWrVkVd0KwqGOSmKrMOyX6jRnHZpEl8t0lJj5fXZs4EIFepjtucOUPTWzUjK5vNc3Jo1pqbq6KvlXL9qlU0alMK3RWl3Pe9a9awoLWV48aMZcuI+4uysnBmZ7OkrY1Lly9jWVsba0Mh7l2zhufr6shRit2jJCwp7A3gX3YHIaKTBGME85X6fgL+bHccKagROAPAX+I8EjjY3nCSz9njx5OrFN+2NHPC4kW8U1/PsrY2lrW18XTtWo5aFGBpWxuF6emc00MtjP74v5Ur2PaH7zln6S8xr9Dam4smTEAB/62t5ZJly5jf3ERVMMg3TU2cv3Qpz9bVkg78JUpNi0BrK3dXr2FyRgbnTVi/HPiVk6eQp9J4ad069l3wM7v89CM3VZm1Ty6daKaxjhC1wCnOSv/QDKYRgzZi3omiR/8GDgP2tjuQFPJXX6lvob/EWYh8uxqQqZlZ3DJ1KhcsXYavuZk/LP1lvW2mZGRw29RpTOqhHHes1oZCPL52LQBv1NfzY0sLmw6ydWPHvHwunTgR76pVvLiujhfX1XW5P1Mprpo8mW3z1q9b8feVK2jVusdy4Jvm5PDohkXcsGo1nzQ2EAQ2zsrm7PHj2ddq+RkhznFW+pfYHYTomSQYI5y1GNqpgA8YUZ9OQ+QzOhdZuhGQsosD9Kv8Ap4pLua+6mo+aGxgZTBIllLMzMpi34JRHDtmDAUxrm7amzHp6Rw7ZgzP1tayU34+G/Uw6LK/ThhbyOY5uTxQXc0XTY3UtbczLj2dnfLyObWwkNlRjvNM7Vo+aWxkTh/lwDfOzuGe6dMJaU1Ia7JG3rok/3NW+h+yOwjRO9XbKG0xcrjKXb/HTKMUA9cGbOsr9fn8Jc59gdfsDkiIFLQS2NxZ6a/qc0thqxGX9orofKW+e4GX7Y4jyV1vJRd5yEqpQgyV0yS5SA6SYIhIpwFr7Q4iSVVi1nrB+jnDxliESFX3OSv9L9gdhIiNJBiig6/UtxQpWDMQGjjNV+pr8Zc4twfOszsgIVJQADjf5hhEP0iCIbrwlfoeAh6zO44kc4ev1Pe+v8SZCdyLrJQqRLy1Ayc7K/0jejW3ZCMJhojmNGC+3UEkiV+AMuv6JcAWNsYiRKr6q7PS/47dQYj+kQRDrMdX6msADgfq+tpW8AdfqW+dv8RZAvzV7mCESEHPANfaHYToP0kwRFS+Ut+PmFVXZR5zzx73lfpejFgpNT4FFIQQYX6gVKp1JidJMESPfKW+Z5FFunqyhs4BsWcCu9kYixCpqA44TMZdJC9JMERfLscsKCS6utBX6lvtL3FOA66zOxghUozGtFx8b3cgYuAkwUhySqkhLffuK/WFgKMBWQ650yu+Ut+D1vU7kBLrQsTbNc5K/7N2ByEGRxKMBKWUGqWUqlJKLVNKndTDNsXAL0qpfyqldhiqWHylvjWYFUGlqRIa6Fwp9RjgQHvDESLlzAX+ZncQYvBSKsFQSjmVUsVKqQnWCbpfyywqI1sp5VBKTVZKzVZKTY+y3XSl1DilVMxLLlr7zrIet/4Sit1ordcBOcAU4P0eNjsCs5jWEcCKWGMZCF+pbz5wAmY++kj2F1+pb5G1UuqtfW4thOiPn4HjnJX+kf45kxJSbTXVt+i2eqVSCiAEBDEnR03nzAhlXdIxr0W0hKscOLnbbe8BG1r71xH77k5Z+0y3roMZuLQh0BjD86kD8nvYN0C4ZeNGIE8pVRJlmyqtdVzq9vtKfc+7yl1/Ba6Ox/6S0CfAP63rNwMTbYxFiFTTCBzurPTX2B2IiI+UasGIEMQ0ZVcDq6zLaqDKuqwB8qxLm3X/Suu+GqDe2kcs2jDJSTYmcQlGXNqAFqApYvs7tNZrY9x3Q093KKX2AFzWr//ATOeKdnFF3cEA+Up91zAyK322Ab/3lfra/SXOX9OZ3AkhBq8dM6hznt2BiPhJtRaMEqBRa93a20bWeIVPrF+P0lq/0sN2WUBWlLt2wGTbDVprrZT6GZgJ/Fpr/W6U/ZQCDwDNmG++PcWVBUwAVmmt24houbC6eyYDv2itNXCRddebmBaVSNsABwFfa63f6ul4g3Aq5vnuOAT7TlTX+kp98/0lznzgTruDESLFnOus9P/X7iBEfKVUgtGPloHwAKLPe0ourP21AuslK1rrVd1uGmv9rO5hVxdaP+/TWq/sJa6ZmFYHlFKtQHgMyfd0Jjq5VoJ0kPW7Q2vtCe9AKZUGfG79+vdejjVgvlJfs6vc9RvgbeLcQpKg/HR2C10FFNsXihAp5ypnpf/fdgch4i9Vu0h6pJTaD3BjujMGveqldUJ3WL+ul2AopfbHrE8RBG6IYZfNwFLMtNBwN80KTDdOK2Y8x02Y+L8AtlVKuSMefzKwNfCB1vrZ/j2b2PlKfdXA/sBPQ3WMBNGO6Rpp9Zc4d0RWmxUinu52VvqlxH6KGlEJhjV7I5wpf6y1/jAOu90Q8zqGMElAd+GujMe01oHedqS1rtRa52qtpwHbYsZvAOyhtZ6ktc4G/mTddxdwDCYJuVkplauU2gozs6EB040xpHylvhXAvsCSoT6WjW73lfo+jFgpdUT9zwgxhJ4B/mh3EGLojLQPy38DG1nXO7o+lFKjlVKzBrjPja2fS7XWXQaGKqVcmG/5GvBatykrGeirONPRQEG3/RUCuwMLgEu01j8BV2Ce0yPAC5hZJ2dorX8Y4PPpF1+pbxGwH9GTq2S3BLjUul4GbG5jLEKkkncx01FDdgcihs6ISTCUUmez/nRTlFLbAl8CHyqlBnICCS/PvcBKVOZE3BduvVDAt9aU1nbMANHt+9jvGRHXf6eUWgAUaq33ATa36mSAWWXwY+AwYBrwT631IwN4HgPmK/V9D/waWDucxx0GZ/pKffX+EqcT+IvdwQiRIuYBBzsr/c12ByKG1ohIMJRSJ9BZv2BBt7unWJeJwNtKqS3on72sn0uA5cDjSqk0pdQGwLGYhKLFurRHbPt2L/HOwcxUCasDZgB3K6WU1rrJ2m4vzAySnYAK67mdo5R6Vil1lFJqfD+fy4D5Sn1fA7+hl6m1SeZRX6nvJX+JMw3TNRJtNpEQon8CwBxnpb/W7kDE0Ev5BEMpdT6mWJYCLgFejrxfa/0isDfm2/c44I1YWzKUUrl0rqL5ImYwpgMzyLIKM8MjXWudo7XOoXNA5H1a66jFs6xBo1di6naEk6H/At8C3wAzlFLnKaW+wUxRnQwcqrU+ENOacgdmhskTwGql1AKl1IMMA1+p7yPgUDrHjiSrKjoHAP8R2MXGWIRIFauB/Z2V/uV2ByKGR8omGEqpAqXU/Zi6E2nA37XWUWdxaK0/AQ7AFNgaD7ymlJodw2F+i1noqg14DdOKAHCM1rpVa93RBKiU2gUzXqMNuLuXfZ4NbAc8ZG0LZgzHzsAmmCTlFkwydDbg1Fo/Zz2PBq312dZx/o3pipmBNfV1OPhKfa9jxo/EWqgsEV3gK/VV+Uuc04Fr7A5GiBRQjWm5+NHuQMTwSckEw5qK+hWdYy4uiawVEY3W+mPgcMxskMmYJGNKH4f6g/Xzda11DXC/9fvxVtGsSOHaGw9rrZf1EPdmdJ7Q7usW3zrgYkxLxueYKqQXAN8opeZHXoCXMC0Jc4ETu+9rqPlKfc9hXnvdx6aJaK6v1Pewdf1OZKVUIQZrFbCXs9L/pd2BiOGVUgmGUsqllPof8CowG9NUf1JPLRfdaa1fw0wDBVNMaa5SyhFtW6XUwXQ2nd9mPf4rzIDLKcCZEdsehhkE2Ujvxa8ewcwCeUtr/W2U+L7VWrsws0XGArMAJ7BZt8vGwFRMRdCH+yjuNSR8pb5HgLOG+7iDVE/nSqnHYcaUCCEGbhmwh5QAH5lSJsFQSu2GmQ1yuHXTKmAfrfVD/dmP1voWzJgHMCfvPaIcaxSm2BXAl1rrlyLuvtz6+Vel1FSl1Ew6u0Qu11ov6uXwT1s/+6rAGZ5ie53WWnW/AKdY99s6BcxX6rsDOIfkWYH1Ml+pb7G/xDkeWSlViMFaDOzurPRX2h2IsEfKJBha6/eB06xf3wS20lp/MMDdnQ58BOyutX4+yv33YFoPQkS0VFhxvIlJUMZjEobXrOsVdM5k6cktwHNa63cGGHfC8ZX6bsPMpul1fZgE8BGdRdhuxvzNhBAD8zPwK2el/2e7AxH2SZkEA0Br/QCmDPh+WusBj1TWWtdorXexxmV0oZT6J2YQI8C1WuvPouzidEy57x0w64t8CBzZ08yRiOPWAccNNO5E5Sv1PQnMwUy3TUStdK6UOgc4we6AhEhifkzLxWK7AxH2SqkEA0Br/VJfJ/KBUErlKKXuwzT5gxkHcUWU7cYD12HGYYRtC/xDKbVJX8fRWjdG/BoeKKoGFHQC8ZX63sJ0N62wO5YorvGV+r7zlzgLMCXYhRADMw/Y01npjzqQXYwsKZdgxCCt289YXUzn2IaPgOPCiYxV/ntHpdQ9wCJMV806zCyPV4BsTD2FSqXUN0qpq5VSbqXU9CizTSKF7+sea7r1889KKd39QudslkwSiFWMaxcgkaaqfYuphgpmxdQiG2MRIpl9jpktkorLBogBSKnl2mOU1e1nTLTWVyqllgAnYaaAjlJKHY75Vv4bzNRWMFMzHwcusqaj3qKUOh7wYGa2bEFneXEwU0h/18Nh86yf+d1uz7Z+VmOK13TnsOLp/jjb+Up9C13lrl0xY1L6Kpc+1CJXSt0JU1dECNF/7wMHSoVOEWkktmCE6xoU9LpVFFrrB7TWe1tjJSZgBnueijmZBzGDO7fWWh8bWevCWhukBDO+4r1uu/VEO1a3ZeDHdrs7PADxHq11SfcLnQt09VXHwxa+Ut9qTIn1uTaHcpuv1Pexv8SZBfyHkfn/IMRgPQzsK8mF6E5pnYy1kAZOKfUWsCewWms9cZD7uhdwAc8C5T0V0IryuFnAgcBMrfV5PWyjMJU7AZZorVNljY8OrnJXJubEfqINh18EbOYr9TX4S5weooynEUL0SgN/c1b6r7I7EJGYRlyCEU/WwmPyAg6Cq9ylMEvZXzLMhz7AV+qb6y9xboqp+iqLmQkRuyag1Fnpf8ruQETikgRDJARXuet8TPGy4Zgx87Cv1HeitVLqB5jVaIUQsVmBWW492hR9ITpIn7NICL5S3y3AIUDNEB9qNXC+df1sJLkQoj++AXaQ5ELEQlowREJxlbuKMYNltx2iQxznK/U95i9xbgjMZwCDfYUYoZ4HjndW+uvtDkQkB2nBEAnFV+oLALtiVjKNtwpfqe8x6/qdSHIhRKxuBA6T5EL0h7RgiITlKncdj6msGY96Husws0aW+EucJwD9WgRPiBGqCTjLWem/v88thehGEgyR0Fzlrk0xXSbOQe7qbF+p79/+EucEzFoJ4wYdnBCp7VvgaGel/1u7AxHJSbpIRELzlfq+w1T8fKyvbXvxIXC7df0WJLkQoi/3AttLciEGQ1owRNJwlbv+iFlKvT81K1qArX2lPr+/xPkbTIlyIUR0dcDpzkr/E3YHIpKftGCIpOEr9d0O7Iapwhmrq63kYhRDM3BUiFTxKbC1JBciXiTBEEnFV+r7DNgaeDGWzTFVQsGsmDp9qOISIolp4B/Abs5K/wK7gxGpQ7pIRFKySoyfDtxA5wJ2kdqBnX2lvk/9Jc5dMIvMSUItRFerMSW/X7Y7EJF6JMEQSc1V7irCDEjbr9tdt/hKfRf4S5zZmLVGBjsLRYhU8xomuVhudyAiNck3OpHUfKW+xb5S3/7AaZgBagAB4C/W9cuR5EKISGuAk52V/v0luRBDSVowRMpwlbumAXcDN/tKfa/5S5ybA18CmfZGJkTCeBQ431npX213ICL1SYIhUpa/xHkZcLXdcQiRABYBZzor/XPtDkSMHNJFIlKWs9J/DbA/8LPdsQhhkxBwE7CZJBdiuEkLhkh5/hJnDvBX4GKku0SMHF8Dpzkr/Z/bHYgYmSTBECOGNSbjDkyxLiFSVRPgAW5yVvqDNsciRjBJMMSI4y9xHo4pwLWR3bEIEWf/BS5xVvoX2h2IEJJgiBHJX+LMBM4E/gaMtzkcIQbrE+AiZ6X/A7sDESJMEgwxovlLnA7gUuA8IMfmcITor0WY9+/jzkq/fJiLhCIJhhCAv8RZhJnSejygbA5HiL5UY9bXuc1Z6W+2OxghopEEQ4gI/hLnNpiFn/ayOxYhomgAbgFucFb6a22ORYheSYIhRBT+EqcbuBKzcqsQdmvDVKm90lnpX2l3MELEQhIMIXrhL3H+Gvgz0qIh7FGPWczvJmelf4ndwQjRH5JgCBEDf4lzB6AMOBQZoyGG3krgX8Dtzkp/jd3BCDEQkmAI0Q/+EmcJpiLoCUCWzeGI1PMjcCNQnuqDN5VSGVprKQSWwiTBEGIA/CXOqcCFwOlAgc3hiOT3KXA98Iyz0t9udzCDoZQaBSwEWoEyrfWDUbYpBj4GngQe1lp/OqxBimEhCYYQg+AvcY4FzgL+CEyxORyRfF4GrndW+t8ergMqpaYDjUCD1jqmVhKllMKs4zMKaNJaN/axfT2QD8zSWi+Icv+fgBuA5cBOWuvF/XsWIhlIgiFEHPhLnOnAb4DfWz8z7I1IJLCVwEPAf5yV/srhPrhSKgBsaP2qgSAQrdVEYVbcTqdz3FEdsKHWem0fx1iGSbhnaK0DUe6fB7iAPwEVPeymSmtd1dtxRGKTBEOIOPOXOCcDJwOnIuudCCOIOZHeB7xk5yJk3RKMVkzLhAKaMcu7r/cQIM+6fp3WuiyGY/wIzCZKgqGU2gN4O4ZQ99ZavxXDdiJBSYIhxBDylzj3AH4HHAHk2hyOGH7fAfcDD/1/e/caK1dVxmH8eSuXViRIAypUIhSUMxQQCt4QIaIpyEVFY4xFQTEa0SgSg0aMAlFDTAgBPhgCChijwQiVS0AQLSI3GxFB0TkoSAApihEMxAvU8vrh3YcehmlLyqLnzDnPL9mZzuw1a/ZuTzr/s/da75ou9Ssi4mWsuUWSEXEPsBA4MDN/MaT9McCFVADZMTOfdR4RsRmwLfBwZq6KiLuA1wA7AQ8CrwD+0n3e5cARwHLghoGuFnf7bs9Ma9CMOAOGtBF0a54spW6hLJ7iw9EL6zHgIuCC3nj/l1N9MOsTEY8AWwN7ZOadQ/bfAewJfDMzP7WWPsaAfvd08lWRJ1kz22oe8Hrg+u75rzNz30l9zAFupYrbHZmZlz6/M9NUM2BIG1l/rLcIOLLbDBszw7+BnwCXAMt64/11DoKcLrov9VXUWIsFmblyYP8S4BrqFs+rh42n6NqNAb8B/kEVB1tIhYz7qUUEXwrMp8LFYuA2YB/g8My8suvjWODbwE2ZuX/L89TUMGBIU6hbZO1dVNh4Cw4OHSV/A64ALgN+Oop1KyJiJ+DP1NiLuYN1KSLiGmAJ8N3MPPo59rkF8Fdq+vbTYzAi4mTgFOAcqtZHn5rO+lpgV+p2SQCLM/OPz/fcNPUMGNI00R/rzQcOp8LGEtYMrNP00acCxeXAihlQs+Jg4Grg/sx81cC+PYDfUjNNds/MP3TTVecCm2Tm42vpc+JKBHQBIyLmAz8EdgT2yszHI+IkagXjHwGvAxYAH8rM77U+T00NA4Y0DfXHevOokPFu4O3AK6f0gGavp4CbqVBxWW+8/6cpPp6mIuJEqsDXz6kraftl5tXdvguBY9by1rdl5vK19LmCGmsB8DXgKGBJZt4dEfMy8z9du6D+bt/YtT0rMz/7fM9J04cBQxoB/bHeQuoWygHdtsvUHtGM9QRVVfNG6pL9zTN5WfSIuAp4B1WX473UeIz51KyPe6lbdqu65ptSYzUeoGaTPOvqTUQcQhUPm/B5KsBcR4WS7Nq9lVqt+M3U9N0edXXjCuD7wHJrYIw+A4Y0gvpjve1YEzYOABbhImwb4lHqt+gbqFBxa2+8/8TUHtLGERHzqHEkWwLvB06jBmfuC/wOmDO50uekqaenZuYpQ/qbA6ygamw83vW1kAoN11KLtx1B1YfZE7gH+FxmXtaN2/gGcBwVYqACzo3PdeyHph8DhjQDdOM39u+2vYDdsXT5oNXUgMZbWRMo7uyN92flf4IR8UHqysUq4OXAqcCngdMz88SBtvsBN3VtdxycbdK1+QxwFnAGcBg1cHMnambJD4BDqBD8IBVmzs3MVQN97AycAHyEGoN0Umae1uiUtZEZMKQZqgsduw/Ztp7K49oIVlO/Hf+eKnQ18XjXKM70eKFExE3AfsCPM/PQiNibmj76EBUinpzU9mrgYOCCzDx2SF+LqKsXW1A/Y5fQBYxukOciqjbIf4GdgUeoGhmDt1k27fpYQQ3+vHZYYS+NBgOGNMv0x3rbsyZs7AbsQI3gX0DVKxgFTwF/p74M7+WZYeKu2XKbY0NFxDupgasAh2XmVd3rt1CDLo/PzLO7144EllG1PnbLzPuG9Hc7Nd30usw8KCLGmRQwJrX7CnWlZH3OyczjNvD0NE04516aZXrj/ZXASqow1DP0x3ovBrbvtgVDHrejQshLgM0bH9pT1G+4j1LB4aHuOB8a2FYCD0/leh6jrFtO/Yzu6W0T4aLzJeBnwJcj4hLq3/jciX3DwkVnGRUw1hceJq6KDF3TJCI+TJVWH7YmikaMAUPS07oKlHd32zr1x3qbUEFjYptLfSFt1m0Tf15NBYd1br3x/iq0MZxH3aZYDXxi8o7MXB4RF1Nr5ywDtum2K4Gz19HnmVSBrOvX0UazjAFD0gbpriD8s9s0AiLibGrGCMBpmfmrIc0+DryJNbUsbgbeN2xa6oTMfCwiljY9WI28OetvIkkaZRExNyLOp2aJQE0dPXlIu22o6aKTZyDtA5weEbuu6zMyc/L6KxMLnDl1ehYzYEjSzHciNfUT4BZg6cQViShviIjzgPuAj1F1LE6gFjrbHPgkMB4Rd0TE1yPisIjYoVumfZiJ1we/Y17UPX4hInJwo8ZfQM0m0YjzFokkzXCZ+dWIeAA4mio/v2VEvAc4EDiUqtwJte7IRVQBrJXAmRFxFLVI2S5Ugaw9J3V9PvDRIR85sY7OFgOvTwwMfoSaBTRoq+5YBt+nEeQVDEmaBTLzwsw8KDMfA7alBnseS32h/w+4GNg7Mz8wuZBWt/jYGLCUKlA22SmDn9NV9NyqezpYc2Wb7vG8zBwb3IAvdvstEjcDWAdDkmahiPgWsAdwKfCdYdU51/K+nalVfxdm5vFD9gdVAwPggcz8V5sj1qgxYEjSLBQRkX4B6AVkwJAkSc05BkOSJDVnwJAkSc0ZMCRJUnMGDEmS1JwBQ5IkNWfAkCRJzRkwJElScwYMSZLUnAFDkiQ1Z8CQJEnNGTAkSVJzBgxJktScAUOSJDVnwJAkSc0ZMCRJUnMGDEmS1JwBQ5IkNWfAkCRJzRkwJElScwYMSZLUnAFDkiQ1Z8CQJEnNGTAkSVJzBgxJktScAUOSJDVnwJAkSc0ZMCRJUnMGDEmS1JwBQ5IkNWfAkCRJzRkwJElScwYMSZLUnAFDkiQ1Z8CQJEnNGTAkSVJzBgxJktScAUOSJDVnwJAkSc0ZMCRJUnMGDEmS1JwBQ5IkNWfAkCRJzRkwJElScwYMSZLUnAFDkiQ1Z8CQJEnNGTAkSVJzBgxJktScAUOSJDVnwJAkSc0ZMCRJUnMGDEmS1JwBQ5IkNWfAkCRJzRkwJElScwYMSZLUnAFDkiQ1Z8CQJEnNGTAkSVJzBgxJktScAUOSJDVnwJAkSc0ZMCRJUnMGDEmS1JwBQ5IkNfd/MutElWf9vbUAAAAASUVORK5CYII=\n",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"explode = [0.01,0.01,0.01,0.01]\n",
"plt.figure(figsize=(2,2),dpi=300)\n",
"plt.pie(dic.values(),\n",
" explode=explode,\n",
" labels=dic.keys(),\n",
" autopct='%1.2f%%',\n",
" textprops={'fontsize': 6})\n",
"plt.title('学生考试总成绩分布饼图',fontsize=6)\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d99ddfcccd7dc019",
"metadata": {
"ExecuteTime": {
"end_time": "2025-04-24T15:56:55.605940Z",
"start_time": "2025-04-24T15:56:55.604127Z"
}
},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 10,
"id": "8c5933d8c0d43772",
"metadata": {
"ExecuteTime": {
"end_time": "2025-04-24T15:56:55.633211Z",
"start_time": "2025-04-24T15:56:55.615047Z"
}
},
"outputs": [
{
"data": {
"text/plain": [
"[[72,\n",
" 69,\n",
" 90,\n",
" 47,\n",
" 76,\n",
" 71,\n",
" 88,\n",
" 40,\n",
" 64,\n",
" 38,\n",
" 58,\n",
" 40,\n",
" 65,\n",
" 78,\n",
" 50,\n",
" 69,\n",
" 88,\n",
" 18,\n",
" 46,\n",
" 54,\n",
" 66,\n",
" 65,\n",
" 44,\n",
" 69,\n",
" 74,\n",
" 73,\n",
" 69,\n",
" 67,\n",
" 70,\n",
" 62,\n",
" 69,\n",
" 63,\n",
" 56,\n",
" 40,\n",
" 97,\n",
" 81,\n",
" 74,\n",
" 50,\n",
" 75,\n",
" 57,\n",
" 55,\n",
" 58,\n",
" 53,\n",
" 59,\n",
" 50,\n",
" 65,\n",
" 55,\n",
" 66,\n",
" 57,\n",
" 82,\n",
" 53,\n",
" 77,\n",
" 53,\n",
" 88,\n",
" 71,\n",
" 33,\n",
" 82,\n",
" 52,\n",
" 58,\n",
" 0,\n",
" 79,\n",
" 39,\n",
" 62,\n",
" 69,\n",
" 59,\n",
" 67,\n",
" 45,\n",
" 60,\n",
" 61,\n",
" 39,\n",
" 58,\n",
" 63,\n",
" 41,\n",
" 61,\n",
" 49,\n",
" 44,\n",
" 30,\n",
" 80,\n",
" 61,\n",
" 62,\n",
" 47,\n",
" 49,\n",
" 50,\n",
" 72,\n",
" 42,\n",
" 73,\n",
" 76,\n",
" 71,\n",
" 58,\n",
" 73,\n",
" 65,\n",
" 27,\n",
" 71,\n",
" 43,\n",
" 79,\n",
" 78,\n",
" 65,\n",
" 63,\n",
" 58,\n",
" 65,\n",
" 79,\n",
" 68,\n",
" 85,\n",
" 60,\n",
" 98,\n",
" 58,\n",
" 87,\n",
" 66,\n",
" 52,\n",
" 70,\n",
" 77,\n",
" 62,\n",
" 54,\n",
" 51,\n",
" 99,\n",
" 84,\n",
" 75,\n",
" 78,\n",
" 51,\n",
" 55,\n",
" 79,\n",
" 91,\n",
" 88,\n",
" 63,\n",
" 83,\n",
" 87,\n",
" 72,\n",
" 65,\n",
" 82,\n",
" 51,\n",
" 89,\n",
" 53,\n",
" 87,\n",
" 75,\n",
" 74,\n",
" 58,\n",
" 51,\n",
" 70,\n",
" 59,\n",
" 71,\n",
" 76,\n",
" 59,\n",
" 42,\n",
" 57,\n",
" 88,\n",
" 22,\n",
" 88,\n",
" 73,\n",
" 68,\n",
" 100,\n",
" 62,\n",
" 77,\n",
" 59,\n",
" 54,\n",
" 62,\n",
" 70,\n",
" 66,\n",
" 60,\n",
" 61,\n",
" 66,\n",
" 82,\n",
" 75,\n",
" 49,\n",
" 52,\n",
" 81,\n",
" 96,\n",
" 53,\n",
" 58,\n",
" 68,\n",
" 67,\n",
" 72,\n",
" 94,\n",
" 79,\n",
" 63,\n",
" 43,\n",
" 81,\n",
" 46,\n",
" 71,\n",
" 52,\n",
" 97,\n",
" 62,\n",
" 46,\n",
" 50,\n",
" 65,\n",
" 45,\n",
" 65,\n",
" 80,\n",
" 62,\n",
" 48,\n",
" 77,\n",
" 66,\n",
" 76,\n",
" 62,\n",
" 77,\n",
" 69,\n",
" 61,\n",
" 59,\n",
" 55,\n",
" 45,\n",
" 78,\n",
" 67,\n",
" 65,\n",
" 69,\n",
" 57,\n",
" 59,\n",
" 74,\n",
" 82,\n",
" 81,\n",
" 74,\n",
" 58,\n",
" 80,\n",
" 35,\n",
" 42,\n",
" 60,\n",
" 87,\n",
" 84,\n",
" 83,\n",
" 34,\n",
" 66,\n",
" 61,\n",
" 56,\n",
" 87,\n",
" 55,\n",
" 86,\n",
" 52,\n",
" 45,\n",
" 72,\n",
" 57,\n",
" 68,\n",
" 88,\n",
" 76,\n",
" 46,\n",
" 67,\n",
" 92,\n",
" 83,\n",
" 80,\n",
" 63,\n",
" 64,\n",
" 54,\n",
" 84,\n",
" 73,\n",
" 80,\n",
" 56,\n",
" 59,\n",
" 75,\n",
" 85,\n",
" 89,\n",
" 58,\n",
" 65,\n",
" 68,\n",
" 47,\n",
" 71,\n",
" 60,\n",
" 80,\n",
" 54,\n",
" 62,\n",
" 64,\n",
" 78,\n",
" 70,\n",
" 65,\n",
" 64,\n",
" 79,\n",
" 44,\n",
" 99,\n",
" 76,\n",
" 59,\n",
" 63,\n",
" 69,\n",
" 88,\n",
" 71,\n",
" 69,\n",
" 58,\n",
" 47,\n",
" 65,\n",
" 88,\n",
" 83,\n",
" 85,\n",
" 59,\n",
" 65,\n",
" 73,\n",
" 53,\n",
" 45,\n",
" 73,\n",
" 70,\n",
" 37,\n",
" 81,\n",
" 97,\n",
" 67,\n",
" 88,\n",
" 77,\n",
" 76,\n",
" 86,\n",
" 63,\n",
" 65,\n",
" 78,\n",
" 67,\n",
" 46,\n",
" 71,\n",
" 40,\n",
" 90,\n",
" 81,\n",
" 56,\n",
" 67,\n",
" 80,\n",
" 74,\n",
" 69,\n",
" 99,\n",
" 51,\n",
" 53,\n",
" 49,\n",
" 73,\n",
" 66,\n",
" 67,\n",
" 68,\n",
" 59,\n",
" 71,\n",
" 77,\n",
" 83,\n",
" 63,\n",
" 56,\n",
" 67,\n",
" 75,\n",
" 71,\n",
" 43,\n",
" 41,\n",
" 82,\n",
" 61,\n",
" 28,\n",
" 82,\n",
" 41,\n",
" 71,\n",
" 47,\n",
" 62,\n",
" 90,\n",
" 83,\n",
" 61,\n",
" 76,\n",
" 49,\n",
" 24,\n",
" 35,\n",
" 58,\n",
" 61,\n",
" 69,\n",
" 67,\n",
" 79,\n",
" 72,\n",
" 62,\n",
" 77,\n",
" 75,\n",
" 87,\n",
" 52,\n",
" 66,\n",
" 63,\n",
" 46,\n",
" 59,\n",
" 61,\n",
" 63,\n",
" 42,\n",
" 59,\n",
" 80,\n",
" 58,\n",
" 85,\n",
" 52,\n",
" 27,\n",
" 59,\n",
" 49,\n",
" 69,\n",
" 61,\n",
" 44,\n",
" 73,\n",
" 84,\n",
" 45,\n",
" 74,\n",
" 82,\n",
" 59,\n",
" 46,\n",
" 80,\n",
" 85,\n",
" 71,\n",
" 66,\n",
" 80,\n",
" 87,\n",
" 79,\n",
" 38,\n",
" 38,\n",
" 67,\n",
" 64,\n",
" 57,\n",
" 62,\n",
" 73,\n",
" 73,\n",
" 77,\n",
" 76,\n",
" 57,\n",
" 65,\n",
" 48,\n",
" 50,\n",
" 85,\n",
" 74,\n",
" 60,\n",
" 59,\n",
" 53,\n",
" 49,\n",
" 88,\n",
" 54,\n",
" 63,\n",
" 65,\n",
" 82,\n",
" 52,\n",
" 87,\n",
" 70,\n",
" 84,\n",
" 71,\n",
" 63,\n",
" 51,\n",
" 84,\n",
" 71,\n",
" 74,\n",
" 68,\n",
" 57,\n",
" 82,\n",
" 57,\n",
" 47,\n",
" 59,\n",
" 41,\n",
" 62,\n",
" 86,\n",
" 69,\n",
" 65,\n",
" 68,\n",
" 64,\n",
" 61,\n",
" 61,\n",
" 47,\n",
" 73,\n",
" 50,\n",
" 75,\n",
" 75,\n",
" 70,\n",
" 89,\n",
" 67,\n",
" 78,\n",
" 59,\n",
" 73,\n",
" 79,\n",
" 67,\n",
" 69,\n",
" 86,\n",
" 47,\n",
" 81,\n",
" 64,\n",
" 100,\n",
" 65,\n",
" 65,\n",
" 53,\n",
" 37,\n",
" 79,\n",
" 53,\n",
" 100,\n",
" 72,\n",
" 53,\n",
" 54,\n",
" 71,\n",
" 77,\n",
" 75,\n",
" 84,\n",
" 26,\n",
" 72,\n",
" 77,\n",
" 91,\n",
" 83,\n",
" 63,\n",
" 68,\n",
" 59,\n",
" 90,\n",
" 71,\n",
" 76,\n",
" 80,\n",
" 55,\n",
" 76,\n",
" 73,\n",
" 52,\n",
" 68,\n",
" 59,\n",
" 49,\n",
" 70,\n",
" 61,\n",
" 60,\n",
" 64,\n",
" 79,\n",
" 65,\n",
" 64,\n",
" 83,\n",
" 81,\n",
" 54,\n",
" 68,\n",
" 54,\n",
" 59,\n",
" 66,\n",
" 76,\n",
" 74,\n",
" 94,\n",
" 63,\n",
" 95,\n",
" 40,\n",
" 82,\n",
" 68,\n",
" 55,\n",
" 79,\n",
" 86,\n",
" 76,\n",
" 64,\n",
" 62,\n",
" 54,\n",
" 77,\n",
" 76,\n",
" 74,\n",
" 66,\n",
" 66,\n",
" 67,\n",
" 71,\n",
" 91,\n",
" 69,\n",
" 54,\n",
" 53,\n",
" 68,\n",
" 56,\n",
" 36,\n",
" 29,\n",
" 62,\n",
" 68,\n",
" 47,\n",
" 62,\n",
" 79,\n",
" 73,\n",
" 66,\n",
" 51,\n",
" 51,\n",
" 85,\n",
" 97,\n",
" 75,\n",
" 79,\n",
" 81,\n",
" 82,\n",
" 64,\n",
" 78,\n",
" 92,\n",
" 72,\n",
" 62,\n",
" 79,\n",
" 79,\n",
" 87,\n",
" 40,\n",
" 77,\n",
" 53,\n",
" 32,\n",
" 55,\n",
" 61,\n",
" 53,\n",
" 73,\n",
" 74,\n",
" 63,\n",
" 96,\n",
" 63,\n",
" 48,\n",
" 48,\n",
" 92,\n",
" 61,\n",
" 63,\n",
" 68,\n",
" 71,\n",
" 91,\n",
" 53,\n",
" 50,\n",
" 74,\n",
" 40,\n",
" 61,\n",
" 81,\n",
" 48,\n",
" 53,\n",
" 81,\n",
" 77,\n",
" 63,\n",
" 73,\n",
" 69,\n",
" 65,\n",
" 55,\n",
" 44,\n",
" 54,\n",
" 48,\n",
" 58,\n",
" 71,\n",
" 68,\n",
" 74,\n",
" 92,\n",
" 56,\n",
" 30,\n",
" 53,\n",
" 69,\n",
" 65,\n",
" 54,\n",
" 29,\n",
" 76,\n",
" 60,\n",
" 84,\n",
" 75,\n",
" 85,\n",
" 40,\n",
" 61,\n",
" 58,\n",
" 69,\n",
" 58,\n",
" 94,\n",
" 65,\n",
" 82,\n",
" 60,\n",
" 37,\n",
" 88,\n",
" 95,\n",
" 65,\n",
" 35,\n",
" 62,\n",
" 58,\n",
" 100,\n",
" 61,\n",
" 100,\n",
" 69,\n",
" 61,\n",
" 49,\n",
" 44,\n",
" 67,\n",
" 79,\n",
" 66,\n",
" 75,\n",
" 84,\n",
" 71,\n",
" 67,\n",
" 80,\n",
" 86,\n",
" 76,\n",
" 41,\n",
" 74,\n",
" 72,\n",
" 74,\n",
" 70,\n",
" 65,\n",
" 59,\n",
" 64,\n",
" 50,\n",
" 69,\n",
" 51,\n",
" 68,\n",
" 85,\n",
" 65,\n",
" 73,\n",
" 62,\n",
" 77,\n",
" 69,\n",
" 43,\n",
" 90,\n",
" 74,\n",
" 73,\n",
" 55,\n",
" 65,\n",
" 80,\n",
" 50,\n",
" 63,\n",
" 77,\n",
" 73,\n",
" 81,\n",
" 66,\n",
" 52,\n",
" 69,\n",
" 65,\n",
" 69,\n",
" 50,\n",
" 73,\n",
" 70,\n",
" 81,\n",
" 63,\n",
" 67,\n",
" 60,\n",
" 62,\n",
" 29,\n",
" 62,\n",
" 94,\n",
" 85,\n",
" 77,\n",
" 53,\n",
" 93,\n",
" 49,\n",
" 73,\n",
" 66,\n",
" 77,\n",
" 49,\n",
" 79,\n",
" 75,\n",
" 59,\n",
" 57,\n",
" 66,\n",
" 79,\n",
" 57,\n",
" 87,\n",
" 63,\n",
" 59,\n",
" 62,\n",
" 46,\n",
" 66,\n",
" 89,\n",
" 42,\n",
" 93,\n",
" 80,\n",
" 98,\n",
" 81,\n",
" 60,\n",
" 76,\n",
" 73,\n",
" 96,\n",
" 76,\n",
" 91,\n",
" 62,\n",
" 55,\n",
" 74,\n",
" 50,\n",
" 47,\n",
" 81,\n",
" 65,\n",
" 68,\n",
" 73,\n",
" 53,\n",
" 68,\n",
" 55,\n",
" 87,\n",
" 55,\n",
" 53,\n",
" 67,\n",
" 92,\n",
" 53,\n",
" 81,\n",
" 61,\n",
" 80,\n",
" 37,\n",
" 81,\n",
" 59,\n",
" 55,\n",
" 72,\n",
" 69,\n",
" 69,\n",
" 50,\n",
" 87,\n",
" 71,\n",
" 68,\n",
" 79,\n",
" 77,\n",
" 58,\n",
" 84,\n",
" 55,\n",
" 70,\n",
" 52,\n",
" 69,\n",
" 53,\n",
" 48,\n",
" 78,\n",
" 62,\n",
" 60,\n",
" 74,\n",
" 58,\n",
" 76,\n",
" 68,\n",
" 58,\n",
" 52,\n",
" 75,\n",
" 52,\n",
" 62,\n",
" 66,\n",
" 49,\n",
" 66,\n",
" 35,\n",
" 72,\n",
" 94,\n",
" 46,\n",
" 77,\n",
" 76,\n",
" 52,\n",
" 91,\n",
" 32,\n",
" 72,\n",
" 19,\n",
" 68,\n",
" 52,\n",
" 48,\n",
" 60,\n",
" 66,\n",
" 89,\n",
" 42,\n",
" 57,\n",
" 70,\n",
" 70,\n",
" 69,\n",
" 52,\n",
" 67,\n",
" 76,\n",
" 87,\n",
" 82,\n",
" 73,\n",
" 75,\n",
" 64,\n",
" 41,\n",
" 90,\n",
" 59,\n",
" 51,\n",
" 45,\n",
" 54,\n",
" 87,\n",
" 72,\n",
" 94,\n",
" 45,\n",
" 61,\n",
" 60,\n",
" 77,\n",
" 85,\n",
" 78,\n",
" 49,\n",
" 71,\n",
" 48,\n",
" 62,\n",
" 56,\n",
" 65,\n",
" 69,\n",
" 68,\n",
" 61,\n",
" 74,\n",
" 64,\n",
" 77,\n",
" 58,\n",
" 60,\n",
" 73,\n",
" 75,\n",
" 58,\n",
" 66,\n",
" 39,\n",
" 64,\n",
" 23,\n",
" 74,\n",
" 40,\n",
" 90,\n",
" 91,\n",
" 64,\n",
" 59,\n",
" 80,\n",
" 71,\n",
" 61,\n",
" 87,\n",
" 82,\n",
" 62,\n",
" 97,\n",
" 75,\n",
" 65,\n",
" 52,\n",
" 87,\n",
" 53,\n",
" 81,\n",
" 39,\n",
" 71,\n",
" 97,\n",
" 82,\n",
" 59,\n",
" 61,\n",
" 78,\n",
" 49,\n",
" 59,\n",
" 70,\n",
" 82,\n",
" 90,\n",
" 43,\n",
" 80,\n",
" 81,\n",
" 57,\n",
" 59,\n",
" 64,\n",
" 63,\n",
" 71,\n",
" 64,\n",
" 55,\n",
" 51,\n",
" 62,\n",
" 93,\n",
" 54,\n",
" 69,\n",
" 44,\n",
" 86,\n",
" 85,\n",
" 50,\n",
" 88,\n",
" 59,\n",
" 32,\n",
" 36,\n",
" 63,\n",
" 67,\n",
" 65,\n",
" 85,\n",
" 73,\n",
" 34,\n",
" 93,\n",
" 67,\n",
" 88,\n",
" 57,\n",
" 79,\n",
" 67,\n",
" 70,\n",
" 50,\n",
" 69,\n",
" 52,\n",
" 47,\n",
" 46,\n",
" 68,\n",
" 100,\n",
" 44,\n",
" 57,\n",
" 91,\n",
" 69,\n",
" 35,\n",
" 72,\n",
" 54,\n",
" 74,\n",
" 74,\n",
" 64,\n",
" 65,\n",
" 46,\n",
" 48,\n",
" 67,\n",
" 62,\n",
" 61,\n",
" 70,\n",
" 98,\n",
" 70,\n",
" 67,\n",
" 57,\n",
" 85,\n",
" 77,\n",
" 72,\n",
" 78,\n",
" 81,\n",
" 61,\n",
" 58,\n",
" 54,\n",
" 82,\n",
" 49,\n",
" 49,\n",
" 57,\n",
" 94,\n",
" 75,\n",
" 74,\n",
" 58,\n",
" 62,\n",
" 72,\n",
" 84,\n",
" 92,\n",
" 45,\n",
" 75,\n",
" 56,\n",
" 48,\n",
" 100,\n",
" 65,\n",
" 72,\n",
" 62,\n",
" 66,\n",
" 63,\n",
" 68,\n",
" 75,\n",
" 89,\n",
" 78,\n",
" 53,\n",
" 49,\n",
" 54,\n",
" 64,\n",
" 60,\n",
" 62,\n",
" 55,\n",
" 91,\n",
" 8,\n",
" 81,\n",
" 79,\n",
" 78,\n",
" 74,\n",
" 57,\n",
" 40,\n",
" 81,\n",
" 44,\n",
" 67,\n",
" 86,\n",
" 65,\n",
" 55,\n",
" 62,\n",
" 63,\n",
" 88,\n",
" 62,\n",
" 59,\n",
" 68,\n",
" 77],\n",
" [72,\n",
" 90,\n",
" 95,\n",
" 57,\n",
" 78,\n",
" 83,\n",
" 95,\n",
" 43,\n",
" 64,\n",
" 60,\n",
" 54,\n",
" 52,\n",
" 81,\n",
" 72,\n",
" 53,\n",
" 75,\n",
" 89,\n",
" 32,\n",
" 42,\n",
" 58,\n",
" 69,\n",
" 75,\n",
" 54,\n",
" 73,\n",
" 71,\n",
" 74,\n",
" 54,\n",
" 69,\n",
" 70,\n",
" 70,\n",
" 74,\n",
" 65,\n",
" 72,\n",
" 42,\n",
" 87,\n",
" 81,\n",
" 81,\n",
" 64,\n",
" 90,\n",
" 56,\n",
" 61,\n",
" 73,\n",
" 58,\n",
" 65,\n",
" 56,\n",
" 54,\n",
" 65,\n",
" 71,\n",
" 74,\n",
" 84,\n",
" 55,\n",
" 69,\n",
" 44,\n",
" 78,\n",
" 84,\n",
" 41,\n",
" 85,\n",
" 55,\n",
" 59,\n",
" 17,\n",
" 74,\n",
" 39,\n",
" 61,\n",
" 80,\n",
" 58,\n",
" 64,\n",
" 37,\n",
" 72,\n",
" 58,\n",
" 64,\n",
" 63,\n",
" 55,\n",
" 51,\n",
" 57,\n",
" 49,\n",
" 41,\n",
" 26,\n",
" 78,\n",
" 74,\n",
" 68,\n",
" 49,\n",
" 45,\n",
" 47,\n",
" 64,\n",
" 39,\n",
" 80,\n",
" 83,\n",
" 71,\n",
" 70,\n",
" 86,\n",
" 72,\n",
" 34,\n",
" 79,\n",
" 45,\n",
" 86,\n",
" 81,\n",
" 66,\n",
" 72,\n",
" 67,\n",
" 67,\n",
" 67,\n",
" 74,\n",
" 91,\n",
" 44,\n",
" 86,\n",
" 67,\n",
" 100,\n",
" 63,\n",
" 76,\n",
" 64,\n",
" 89,\n",
" 55,\n",
" 53,\n",
" 58,\n",
" 100,\n",
" 77,\n",
" 85,\n",
" 82,\n",
" 63,\n",
" 69,\n",
" 92,\n",
" 89,\n",
" 93,\n",
" 57,\n",
" 80,\n",
" 95,\n",
" 68,\n",
" 77,\n",
" 82,\n",
" 49,\n",
" 84,\n",
" 37,\n",
" 74,\n",
" 81,\n",
" 79,\n",
" 55,\n",
" 54,\n",
" 55,\n",
" 66,\n",
" 61,\n",
" 72,\n",
" 62,\n",
" 55,\n",
" 43,\n",
" 73,\n",
" 39,\n",
" 84,\n",
" 68,\n",
" 75,\n",
" 100,\n",
" 67,\n",
" 67,\n",
" 70,\n",
" 49,\n",
" 67,\n",
" 89,\n",
" 74,\n",
" 60,\n",
" 86,\n",
" 62,\n",
" 78,\n",
" 88,\n",
" 53,\n",
" 53,\n",
" 92,\n",
" 100,\n",
" 51,\n",
" 76,\n",
" 83,\n",
" 75,\n",
" 73,\n",
" 88,\n",
" 86,\n",
" 67,\n",
" 51,\n",
" 91,\n",
" 54,\n",
" 77,\n",
" 70,\n",
" 100,\n",
" 68,\n",
" 64,\n",
" 50,\n",
" 69,\n",
" 52,\n",
" 67,\n",
" 76,\n",
" 66,\n",
" 52,\n",
" 88,\n",
" 65,\n",
" 83,\n",
" 64,\n",
" 62,\n",
" 84,\n",
" 55,\n",
" 69,\n",
" 56,\n",
" 53,\n",
" 79,\n",
" 84,\n",
" 81,\n",
" 77,\n",
" 69,\n",
" 41,\n",
" 71,\n",
" 62,\n",
" 80,\n",
" 81,\n",
" 61,\n",
" 79,\n",
" 28,\n",
" 62,\n",
" 51,\n",
" 91,\n",
" 83,\n",
" 86,\n",
" 42,\n",
" 77,\n",
" 56,\n",
" 68,\n",
" 85,\n",
" 65,\n",
" 80,\n",
" 66,\n",
" 56,\n",
" 72,\n",
" 50,\n",
" 72,\n",
" 95,\n",
" 64,\n",
" 43,\n",
" 86,\n",
" 87,\n",
" 82,\n",
" 75,\n",
" 66,\n",
" 60,\n",
" 52,\n",
" 80,\n",
" 68,\n",
" 83,\n",
" 52,\n",
" 51,\n",
" 74,\n",
" 76,\n",
" 76,\n",
" 70,\n",
" 64,\n",
" 60,\n",
" 49,\n",
" 83,\n",
" 70,\n",
" 80,\n",
" 52,\n",
" 73,\n",
" 73,\n",
" 77,\n",
" 75,\n",
" 81,\n",
" 79,\n",
" 79,\n",
" 50,\n",
" 93,\n",
" 73,\n",
" 42,\n",
" 75,\n",
" 72,\n",
" 92,\n",
" 76,\n",
" 63,\n",
" 49,\n",
" 53,\n",
" 70,\n",
" 85,\n",
" 78,\n",
" 92,\n",
" 63,\n",
" 86,\n",
" 56,\n",
" 52,\n",
" 48,\n",
" 79,\n",
" 78,\n",
" 46,\n",
" 82,\n",
" 82,\n",
" 89,\n",
" 75,\n",
" 76,\n",
" 70,\n",
" 73,\n",
" 60,\n",
" 73,\n",
" 77,\n",
" 62,\n",
" 41,\n",
" 74,\n",
" 46,\n",
" 87,\n",
" 78,\n",
" 54,\n",
" 84,\n",
" 76,\n",
" 75,\n",
" 67,\n",
" 87,\n",
" 52,\n",
" 71,\n",
" 57,\n",
" 76,\n",
" 60,\n",
" 61,\n",
" 67,\n",
" 64,\n",
" 66,\n",
" 82,\n",
" 72,\n",
" 71,\n",
" 65,\n",
" 79,\n",
" 86,\n",
" 81,\n",
" 53,\n",
" 46,\n",
" 90,\n",
" 61,\n",
" 23,\n",
" 75,\n",
" 55,\n",
" 60,\n",
" 37,\n",
" 56,\n",
" 78,\n",
" 93,\n",
" 68,\n",
" 70,\n",
" 51,\n",
" 38,\n",
" 55,\n",
" 61,\n",
" 73,\n",
" 76,\n",
" 72,\n",
" 73,\n",
" 80,\n",
" 61,\n",
" 94,\n",
" 74,\n",
" 74,\n",
" 65,\n",
" 57,\n",
" 78,\n",
" 58,\n",
" 71,\n",
" 72,\n",
" 61,\n",
" 66,\n",
" 62,\n",
" 90,\n",
" 62,\n",
" 84,\n",
" 58,\n",
" 34,\n",
" 60,\n",
" 58,\n",
" 58,\n",
" 66,\n",
" 64,\n",
" 84,\n",
" 77,\n",
" 73,\n",
" 74,\n",
" 97,\n",
" 70,\n",
" 43,\n",
" 90,\n",
" 95,\n",
" 83,\n",
" 64,\n",
" 86,\n",
" 100,\n",
" 81,\n",
" 49,\n",
" 43,\n",
" 76,\n",
" 73,\n",
" 78,\n",
" 64,\n",
" 70,\n",
" 67,\n",
" 68,\n",
" 67,\n",
" 54,\n",
" 74,\n",
" 45,\n",
" 67,\n",
" 89,\n",
" 63,\n",
" 59,\n",
" 54,\n",
" 43,\n",
" 65,\n",
" 99,\n",
" 59,\n",
" 73,\n",
" 65,\n",
" 80,\n",
" 57,\n",
" 84,\n",
" 71,\n",
" 83,\n",
" 66,\n",
" 67,\n",
" 72,\n",
" 73,\n",
" 74,\n",
" 73,\n",
" 59,\n",
" 56,\n",
" 93,\n",
" 58,\n",
" 58,\n",
" 85,\n",
" 39,\n",
" 67,\n",
" 83,\n",
" 71,\n",
" 59,\n",
" 63,\n",
" 66,\n",
" 72,\n",
" 56,\n",
" 59,\n",
" 66,\n",
" 48,\n",
" 68,\n",
" 66,\n",
" 56,\n",
" 88,\n",
" 81,\n",
" 81,\n",
" 73,\n",
" 83,\n",
" 82,\n",
" 74,\n",
" 66,\n",
" 81,\n",
" 46,\n",
" 73,\n",
" 85,\n",
" 92,\n",
" 77,\n",
" 58,\n",
" 61,\n",
" 56,\n",
" 89,\n",
" 54,\n",
" 100,\n",
" 65,\n",
" 58,\n",
" 54,\n",
" 70,\n",
" 90,\n",
" 58,\n",
" 87,\n",
" 31,\n",
" 67,\n",
" 88,\n",
" 74,\n",
" 85,\n",
" 69,\n",
" 86,\n",
" 67,\n",
" 90,\n",
" 76,\n",
" 62,\n",
" 68,\n",
" 64,\n",
" 71,\n",
" 71,\n",
" 59,\n",
" 68,\n",
" 52,\n",
" 52,\n",
" 74,\n",
" 47,\n",
" 75,\n",
" 53,\n",
" 82,\n",
" 85,\n",
" 64,\n",
" 83,\n",
" 88,\n",
" 64,\n",
" 64,\n",
" 48,\n",
" 78,\n",
" 69,\n",
" 71,\n",
" 79,\n",
" 87,\n",
" 61,\n",
" 89,\n",
" 59,\n",
" 82,\n",
" 70,\n",
" 59,\n",
" 78,\n",
" 92,\n",
" 71,\n",
" 50,\n",
" 49,\n",
" 61,\n",
" 97,\n",
" 87,\n",
" 89,\n",
" 74,\n",
" 78,\n",
" 78,\n",
" 49,\n",
" 86,\n",
" 58,\n",
" 59,\n",
" 52,\n",
" 60,\n",
" 61,\n",
" 53,\n",
" 41,\n",
" 74,\n",
" 67,\n",
" 54,\n",
" 61,\n",
" 88,\n",
" 69,\n",
" 83,\n",
" 60,\n",
" 66,\n",
" 66,\n",
" 92,\n",
" 69,\n",
" 82,\n",
" 77,\n",
" 95,\n",
" 63,\n",
" 83,\n",
" 100,\n",
" 67,\n",
" 67,\n",
" 72,\n",
" 76,\n",
" 90,\n",
" 48,\n",
" 62,\n",
" 45,\n",
" 39,\n",
" 72,\n",
" 67,\n",
" 70,\n",
" 66,\n",
" 75,\n",
" 74,\n",
" 90,\n",
" 80,\n",
" 51,\n",
" 43,\n",
" 100,\n",
" 71,\n",
" 48,\n",
" 68,\n",
" 75,\n",
" 96,\n",
" 62,\n",
" 66,\n",
" 81,\n",
" 55,\n",
" 51,\n",
" 91,\n",
" 56,\n",
" 61,\n",
" 97,\n",
" 79,\n",
" 73,\n",
" 75,\n",
" 77,\n",
" 76,\n",
" 73,\n",
" 63,\n",
" 64,\n",
" 66,\n",
" 57,\n",
" 62,\n",
" 68,\n",
" 76,\n",
" 100,\n",
" 79,\n",
" 24,\n",
" 54,\n",
" 77,\n",
" 82,\n",
" 60,\n",
" 29,\n",
" 78,\n",
" 57,\n",
" 89,\n",
" 72,\n",
" 84,\n",
" 58,\n",
" 64,\n",
" 63,\n",
" 60,\n",
" 59,\n",
" 90,\n",
" 77,\n",
" 93,\n",
" 68,\n",
" 45,\n",
" 78,\n",
" 81,\n",
" 73,\n",
" 61,\n",
" 63,\n",
" 51,\n",
" 96,\n",
" 58,\n",
" 97,\n",
" 70,\n",
" 48,\n",
" 57,\n",
" 51,\n",
" 64,\n",
" 60,\n",
" 74,\n",
" 88,\n",
" 84,\n",
" 74,\n",
" 80,\n",
" 92,\n",
" 76,\n",
" 74,\n",
" 52,\n",
" 88,\n",
" 81,\n",
" 79,\n",
" 65,\n",
" 81,\n",
" 70,\n",
" 62,\n",
" 53,\n",
" 79,\n",
" 56,\n",
" 80,\n",
" 86,\n",
" 70,\n",
" 79,\n",
" 67,\n",
" 67,\n",
" 66,\n",
" 60,\n",
" 87,\n",
" 77,\n",
" 66,\n",
" 71,\n",
" 69,\n",
" 63,\n",
" 60,\n",
" 73,\n",
" 85,\n",
" 74,\n",
" 72,\n",
" 76,\n",
" 57,\n",
" 78,\n",
" 84,\n",
" 77,\n",
" 64,\n",
" 78,\n",
" 82,\n",
" 75,\n",
" 61,\n",
" 72,\n",
" 68,\n",
" 55,\n",
" 40,\n",
" 66,\n",
" 99,\n",
" 75,\n",
" 78,\n",
" 58,\n",
" 90,\n",
" 53,\n",
" 76,\n",
" 74,\n",
" 77,\n",
" 63,\n",
" 89,\n",
" 82,\n",
" 72,\n",
" 78,\n",
" 66,\n",
" 81,\n",
" 67,\n",
" 84,\n",
" 64,\n",
" 63,\n",
" 72,\n",
" 34,\n",
" 59,\n",
" 87,\n",
" 61,\n",
" 84,\n",
" 85,\n",
" 100,\n",
" 81,\n",
" 70,\n",
" 94,\n",
" 78,\n",
" 96,\n",
" 76,\n",
" 73,\n",
" 72,\n",
" 59,\n",
" 90,\n",
" 48,\n",
" 43,\n",
" 74,\n",
" 75,\n",
" 51,\n",
" 92,\n",
" 39,\n",
" 77,\n",
" 46,\n",
" 89,\n",
" 47,\n",
" 58,\n",
" 57,\n",
" 79,\n",
" 66,\n",
" 71,\n",
" 60,\n",
" 73,\n",
" 57,\n",
" 84,\n",
" 73,\n",
" 55,\n",
" 79,\n",
" 75,\n",
" 64,\n",
" 60,\n",
" 84,\n",
" 69,\n",
" 72,\n",
" 77,\n",
" 90,\n",
" 55,\n",
" 95,\n",
" 58,\n",
" 68,\n",
" 59,\n",
" 77,\n",
" 72,\n",
" 58,\n",
" 81,\n",
" 62,\n",
" 63,\n",
" 72,\n",
" 75,\n",
" 62,\n",
" 71,\n",
" 60,\n",
" 48,\n",
" 73,\n",
" 67,\n",
" 78,\n",
" 65,\n",
" 58,\n",
" 72,\n",
" 44,\n",
" 79,\n",
" 85,\n",
" 56,\n",
" 90,\n",
" 85,\n",
" 59,\n",
" 81,\n",
" 51,\n",
" 79,\n",
" 38,\n",
" 65,\n",
" 65,\n",
" 62,\n",
" 66,\n",
" 74,\n",
" 84,\n",
" 52,\n",
" 68,\n",
" 70,\n",
" 84,\n",
" 60,\n",
" 55,\n",
" 73,\n",
" 80,\n",
" 94,\n",
" 85,\n",
" 76,\n",
" 81,\n",
" 74,\n",
" 45,\n",
" 75,\n",
" 54,\n",
" 31,\n",
" 47,\n",
" 64,\n",
" 84,\n",
" 80,\n",
" 86,\n",
" 59,\n",
" 70,\n",
" 72,\n",
" 91,\n",
" 90,\n",
" 90,\n",
" 52,\n",
" 87,\n",
" 58,\n",
" 67,\n",
" 68,\n",
" 69,\n",
" 86,\n",
" 54,\n",
" 60,\n",
" 86,\n",
" 60,\n",
" 82,\n",
" 50,\n",
" 64,\n",
" 64,\n",
" 82,\n",
" 57,\n",
" 77,\n",
" 52,\n",
" 58,\n",
" 44,\n",
" 77,\n",
" 65,\n",
" 85,\n",
" 85,\n",
" 54,\n",
" 72,\n",
" 75,\n",
" 67,\n",
" 68,\n",
" 85,\n",
" 67,\n",
" 64,\n",
" 97,\n",
" 68,\n",
" 79,\n",
" 49,\n",
" 73,\n",
" 62,\n",
" 86,\n",
" 42,\n",
" 71,\n",
" 93,\n",
" 82,\n",
" 53,\n",
" 42,\n",
" 74,\n",
" 51,\n",
" 58,\n",
" 72,\n",
" 84,\n",
" 90,\n",
" 62,\n",
" 64,\n",
" 82,\n",
" 61,\n",
" 72,\n",
" 76,\n",
" 64,\n",
" 70,\n",
" 73,\n",
" 46,\n",
" 51,\n",
" 76,\n",
" 100,\n",
" 72,\n",
" 65,\n",
" 51,\n",
" 85,\n",
" 92,\n",
" 67,\n",
" 74,\n",
" 62,\n",
" 34,\n",
" 29,\n",
" 78,\n",
" 54,\n",
" 78,\n",
" 84,\n",
" 78,\n",
" 48,\n",
" 100,\n",
" 84,\n",
" 77,\n",
" 48,\n",
" 84,\n",
" 75,\n",
" 64,\n",
" 42,\n",
" 84,\n",
" 61,\n",
" 62,\n",
" 61,\n",
" 70,\n",
" 100,\n",
" 61,\n",
" 77,\n",
" 96,\n",
" 70,\n",
" 53,\n",
" 66,\n",
" 65,\n",
" 70,\n",
" 64,\n",
" 56,\n",
" 61,\n",
" 43,\n",
" 56,\n",
" 74,\n",
" 57,\n",
" 71,\n",
" 75,\n",
" 87,\n",
" 63,\n",
" 57,\n",
" 58,\n",
" 81,\n",
" 68,\n",
" 66,\n",
" 91,\n",
" 66,\n",
" 62,\n",
" 68,\n",
" 61,\n",
" 82,\n",
" 58,\n",
" 50,\n",
" 75,\n",
" 73,\n",
" 77,\n",
" 74,\n",
" 52,\n",
" 69,\n",
" 57,\n",
" 87,\n",
" 100,\n",
" 63,\n",
" 81,\n",
" 58,\n",
" 54,\n",
" 100,\n",
" 76,\n",
" 57,\n",
" 70,\n",
" 68,\n",
" 63,\n",
" 76,\n",
" 84,\n",
" 100,\n",
" 72,\n",
" 50,\n",
" 65,\n",
" 63,\n",
" 82,\n",
" 62,\n",
" 65,\n",
" 41,\n",
" 95,\n",
" 24,\n",
" 78,\n",
" 85,\n",
" 87,\n",
" 75,\n",
" 51,\n",
" 59,\n",
" 75,\n",
" 45,\n",
" 86,\n",
" 81,\n",
" 82,\n",
" 76,\n",
" 72,\n",
" 63,\n",
" 99,\n",
" 55,\n",
" 71,\n",
" 78,\n",
" 86],\n",
" [74,\n",
" 88,\n",
" 93,\n",
" 44,\n",
" 75,\n",
" 78,\n",
" 92,\n",
" 39,\n",
" 67,\n",
" 50,\n",
" 52,\n",
" 43,\n",
" 73,\n",
" 70,\n",
" 58,\n",
" 78,\n",
" 86,\n",
" 28,\n",
" 46,\n",
" 61,\n",
" 63,\n",
" 70,\n",
" 53,\n",
" 73,\n",
" 80,\n",
" 72,\n",
" 55,\n",
" 75,\n",
" 65,\n",
" 75,\n",
" 74,\n",
" 61,\n",
" 65,\n",
" 38,\n",
" 82,\n",
" 79,\n",
" 83,\n",
" 59,\n",
" 88,\n",
" 57,\n",
" 54,\n",
" 68,\n",
" 65,\n",
" 66,\n",
" 54,\n",
" 57,\n",
" 62,\n",
" 76,\n",
" 76,\n",
" 82,\n",
" 48,\n",
" 68,\n",
" 42,\n",
" 75,\n",
" 87,\n",
" 43,\n",
" 86,\n",
" 49,\n",
" 58,\n",
" 10,\n",
" 72,\n",
" 34,\n",
" 55,\n",
" 71,\n",
" 59,\n",
" 61,\n",
" 37,\n",
" 74,\n",
" 56,\n",
" 57,\n",
" 73,\n",
" 63,\n",
" 48,\n",
" 56,\n",
" 41,\n",
" 38,\n",
" 22,\n",
" 81,\n",
" 72,\n",
" 68,\n",
" 50,\n",
" 45,\n",
" 54,\n",
" 63,\n",
" 34,\n",
" 82,\n",
" 88,\n",
" 74,\n",
" 67,\n",
" 82,\n",
" 74,\n",
" 36,\n",
" 71,\n",
" 50,\n",
" 92,\n",
" 82,\n",
" 62,\n",
" 70,\n",
" 62,\n",
" 62,\n",
" 67,\n",
" 74,\n",
" 89,\n",
" 47,\n",
" 90,\n",
" 72,\n",
" 100,\n",
" 64,\n",
" 70,\n",
" 72,\n",
" 98,\n",
" 49,\n",
" 47,\n",
" 54,\n",
" 100,\n",
" 74,\n",
" 82,\n",
" 79,\n",
" 61,\n",
" 65,\n",
" 89,\n",
" 92,\n",
" 93,\n",
" 56,\n",
" 73,\n",
" 86,\n",
" 67,\n",
" 74,\n",
" 74,\n",
" 51,\n",
" 82,\n",
" 40,\n",
" 70,\n",
" 84,\n",
" 75,\n",
" 48,\n",
" 41,\n",
" 56,\n",
" 67,\n",
" 69,\n",
" 71,\n",
" 64,\n",
" 54,\n",
" 47,\n",
" 78,\n",
" 33,\n",
" 75,\n",
" 66,\n",
" 81,\n",
" 93,\n",
" 69,\n",
" 68,\n",
" 66,\n",
" 47,\n",
" 61,\n",
" 88,\n",
" 78,\n",
" 60,\n",
" 87,\n",
" 64,\n",
" 74,\n",
" 85,\n",
" 52,\n",
" 49,\n",
" 91,\n",
" 100,\n",
" 51,\n",
" 78,\n",
" 78,\n",
" 70,\n",
" 74,\n",
" 78,\n",
" 81,\n",
" 70,\n",
" 54,\n",
" 87,\n",
" 58,\n",
" 77,\n",
" 62,\n",
" 100,\n",
" 75,\n",
" 66,\n",
" 47,\n",
" 70,\n",
" 49,\n",
" 65,\n",
" 65,\n",
" 68,\n",
" 45,\n",
" 87,\n",
" 69,\n",
" 79,\n",
" 66,\n",
" 62,\n",
" 85,\n",
" 52,\n",
" 65,\n",
" 51,\n",
" 55,\n",
" 76,\n",
" 86,\n",
" 77,\n",
" 69,\n",
" 68,\n",
" 42,\n",
" 78,\n",
" 62,\n",
" 76,\n",
" 76,\n",
" 66,\n",
" 79,\n",
" 27,\n",
" 60,\n",
" 56,\n",
" 81,\n",
" 75,\n",
" 88,\n",
" 39,\n",
" 70,\n",
" 56,\n",
" 74,\n",
" 73,\n",
" 62,\n",
" 75,\n",
" 73,\n",
" 54,\n",
" 71,\n",
" 54,\n",
" 64,\n",
" 94,\n",
" 66,\n",
" 42,\n",
" 83,\n",
" 78,\n",
" 84,\n",
" 77,\n",
" 67,\n",
" 74,\n",
" 51,\n",
" 80,\n",
" 66,\n",
" 83,\n",
" 55,\n",
" 43,\n",
" 69,\n",
" 71,\n",
" 74,\n",
" 68,\n",
" 62,\n",
" 53,\n",
" 49,\n",
" 83,\n",
" 70,\n",
" 72,\n",
" 52,\n",
" 70,\n",
" 68,\n",
" 77,\n",
" 78,\n",
" 81,\n",
" 77,\n",
" 78,\n",
" 51,\n",
" 90,\n",
" 68,\n",
" 41,\n",
" 81,\n",
" 77,\n",
" 95,\n",
" 70,\n",
" 61,\n",
" 42,\n",
" 58,\n",
" 71,\n",
" 76,\n",
" 73,\n",
" 93,\n",
" 75,\n",
" 80,\n",
" 57,\n",
" 42,\n",
" 46,\n",
" 84,\n",
" 78,\n",
" 46,\n",
" 82,\n",
" 88,\n",
" 82,\n",
" 76,\n",
" 77,\n",
" 68,\n",
" 70,\n",
" 57,\n",
" 75,\n",
" 80,\n",
" 60,\n",
" 43,\n",
" 68,\n",
" 50,\n",
" 75,\n",
" 81,\n",
" 52,\n",
" 81,\n",
" 64,\n",
" 83,\n",
" 69,\n",
" 81,\n",
" 44,\n",
" 67,\n",
" 52,\n",
" 80,\n",
" 57,\n",
" 68,\n",
" 69,\n",
" 75,\n",
" 65,\n",
" 91,\n",
" 78,\n",
" 69,\n",
" 63,\n",
" 84,\n",
" 79,\n",
" 80,\n",
" 53,\n",
" 43,\n",
" 94,\n",
" 62,\n",
" 19,\n",
" 77,\n",
" 51,\n",
" 61,\n",
" 35,\n",
" 53,\n",
" 81,\n",
" 95,\n",
" 66,\n",
" 69,\n",
" 43,\n",
" 27,\n",
" 60,\n",
" 52,\n",
" 63,\n",
" 74,\n",
" 67,\n",
" 67,\n",
" 75,\n",
" 57,\n",
" 95,\n",
" 66,\n",
" 76,\n",
" 69,\n",
" 52,\n",
" 80,\n",
" 57,\n",
" 70,\n",
" 70,\n",
" 61,\n",
" 69,\n",
" 61,\n",
" 89,\n",
" 59,\n",
" 78,\n",
" 58,\n",
" 32,\n",
" 58,\n",
" 60,\n",
" 53,\n",
" 61,\n",
" 58,\n",
" 85,\n",
" 71,\n",
" 70,\n",
" 72,\n",
" 96,\n",
" 73,\n",
" 41,\n",
" 82,\n",
" 100,\n",
" 77,\n",
" 62,\n",
" 83,\n",
" 95,\n",
" 71,\n",
" 45,\n",
" 43,\n",
" 75,\n",
" 70,\n",
" 67,\n",
" 64,\n",
" 75,\n",
" 59,\n",
" 77,\n",
" 67,\n",
" 56,\n",
" 77,\n",
" 41,\n",
" 63,\n",
" 95,\n",
" 57,\n",
" 54,\n",
" 67,\n",
" 43,\n",
" 55,\n",
" 100,\n",
" 62,\n",
" 68,\n",
" 63,\n",
" 77,\n",
" 56,\n",
" 85,\n",
" 74,\n",
" 78,\n",
" 60,\n",
" 67,\n",
" 79,\n",
" 69,\n",
" 68,\n",
" 67,\n",
" 62,\n",
" 54,\n",
" 93,\n",
" 64,\n",
" 67,\n",
" 80,\n",
" 34,\n",
" 62,\n",
" 86,\n",
" 65,\n",
" 53,\n",
" 54,\n",
" 59,\n",
" 70,\n",
" 55,\n",
" 50,\n",
" 66,\n",
" 53,\n",
" 64,\n",
" 73,\n",
" 51,\n",
" 82,\n",
" 79,\n",
" 80,\n",
" 69,\n",
" 76,\n",
" 73,\n",
" 77,\n",
" 60,\n",
" 80,\n",
" 42,\n",
" 72,\n",
" 85,\n",
" 97,\n",
" 74,\n",
" 49,\n",
" 62,\n",
" 47,\n",
" 89,\n",
" 48,\n",
" 100,\n",
" 68,\n",
" 55,\n",
" 45,\n",
" 76,\n",
" 91,\n",
" 62,\n",
" 91,\n",
" 38,\n",
" 65,\n",
" 85,\n",
" 76,\n",
" 90,\n",
" 74,\n",
" 84,\n",
" 61,\n",
" 91,\n",
" 83,\n",
" 66,\n",
" 72,\n",
" 70,\n",
" 67,\n",
" 68,\n",
" 56,\n",
" 61,\n",
" 46,\n",
" 54,\n",
" 71,\n",
" 56,\n",
" 74,\n",
" 57,\n",
" 82,\n",
" 76,\n",
" 70,\n",
" 90,\n",
" 90,\n",
" 68,\n",
" 66,\n",
" 52,\n",
" 76,\n",
" 68,\n",
" 72,\n",
" 82,\n",
" 92,\n",
" 54,\n",
" 92,\n",
" 54,\n",
" 80,\n",
" 66,\n",
" 54,\n",
" 77,\n",
" 87,\n",
" 73,\n",
" 43,\n",
" 52,\n",
" 62,\n",
" 94,\n",
" 85,\n",
" 84,\n",
" 73,\n",
" 78,\n",
" 79,\n",
" 52,\n",
" 84,\n",
" 57,\n",
" 50,\n",
" 49,\n",
" 59,\n",
" 60,\n",
" 43,\n",
" 47,\n",
" 70,\n",
" 73,\n",
" 53,\n",
" 58,\n",
" 94,\n",
" 68,\n",
" 83,\n",
" 58,\n",
" 62,\n",
" 71,\n",
" 86,\n",
" 68,\n",
" 80,\n",
" 79,\n",
" 89,\n",
" 66,\n",
" 80,\n",
" 97,\n",
" 64,\n",
" 64,\n",
" 69,\n",
" 65,\n",
" 88,\n",
" 50,\n",
" 64,\n",
" 40,\n",
" 33,\n",
" 79,\n",
" 66,\n",
" 70,\n",
" 62,\n",
" 79,\n",
" 74,\n",
" 92,\n",
" 80,\n",
" 46,\n",
" 45,\n",
" 100,\n",
" 78,\n",
" 47,\n",
" 67,\n",
" 70,\n",
" 92,\n",
" 56,\n",
" 64,\n",
" 71,\n",
" 53,\n",
" 52,\n",
" 89,\n",
" 58,\n",
" 68,\n",
" 96,\n",
" 80,\n",
" 78,\n",
" 80,\n",
" 77,\n",
" 76,\n",
" 73,\n",
" 62,\n",
" 65,\n",
" 65,\n",
" 54,\n",
" 50,\n",
" 64,\n",
" 73,\n",
" 99,\n",
" 72,\n",
" 15,\n",
" 48,\n",
" 73,\n",
" 81,\n",
" 63,\n",
" 30,\n",
" 80,\n",
" 51,\n",
" 90,\n",
" 62,\n",
" 82,\n",
" 54,\n",
" 62,\n",
" 65,\n",
" 63,\n",
" 66,\n",
" 91,\n",
" 74,\n",
" 93,\n",
" 72,\n",
" 38,\n",
" 83,\n",
" 84,\n",
" 68,\n",
" 54,\n",
" 56,\n",
" 52,\n",
" 86,\n",
" 62,\n",
" 99,\n",
" 63,\n",
" 46,\n",
" 46,\n",
" 55,\n",
" 70,\n",
" 65,\n",
" 81,\n",
" 85,\n",
" 80,\n",
" 64,\n",
" 81,\n",
" 88,\n",
" 74,\n",
" 73,\n",
" 51,\n",
" 90,\n",
" 79,\n",
" 80,\n",
" 60,\n",
" 81,\n",
" 65,\n",
" 68,\n",
" 55,\n",
" 81,\n",
" 53,\n",
" 76,\n",
" 98,\n",
" 74,\n",
" 79,\n",
" 67,\n",
" 64,\n",
" 61,\n",
" 58,\n",
" 85,\n",
" 73,\n",
" 63,\n",
" 69,\n",
" 67,\n",
" 63,\n",
" 60,\n",
" 71,\n",
" 87,\n",
" 61,\n",
" 77,\n",
" 68,\n",
" 50,\n",
" 76,\n",
" 84,\n",
" 78,\n",
" 66,\n",
" 76,\n",
" 76,\n",
" 78,\n",
" 60,\n",
" 74,\n",
" 60,\n",
" 54,\n",
" 44,\n",
" 68,\n",
" 100,\n",
" 68,\n",
" 73,\n",
" 44,\n",
" 83,\n",
" 53,\n",
" 78,\n",
" 81,\n",
" 73,\n",
" 56,\n",
" 86,\n",
" 90,\n",
" 70,\n",
" 79,\n",
" 59,\n",
" 82,\n",
" 72,\n",
" 87,\n",
" 67,\n",
" 64,\n",
" 65,\n",
" 36,\n",
" 52,\n",
" 79,\n",
" 58,\n",
" 90,\n",
" 85,\n",
" 99,\n",
" 84,\n",
" 74,\n",
" 87,\n",
" 72,\n",
" 99,\n",
" 74,\n",
" 80,\n",
" 70,\n",
" 59,\n",
" 88,\n",
" 42,\n",
" 41,\n",
" 71,\n",
" 77,\n",
" 57,\n",
" 84,\n",
" 37,\n",
" 80,\n",
" 43,\n",
" 94,\n",
" 44,\n",
" 57,\n",
" 59,\n",
" 84,\n",
" 73,\n",
" 73,\n",
" 55,\n",
" 72,\n",
" 56,\n",
" 82,\n",
" 72,\n",
" 47,\n",
" 74,\n",
" 71,\n",
" 68,\n",
" 59,\n",
" 86,\n",
" 68,\n",
" 65,\n",
" 75,\n",
" 85,\n",
" 53,\n",
" 92,\n",
" 52,\n",
" 72,\n",
" 65,\n",
" 77,\n",
" 64,\n",
" 54,\n",
" 86,\n",
" 63,\n",
" 59,\n",
" 72,\n",
" 77,\n",
" 60,\n",
" 75,\n",
" 57,\n",
" 49,\n",
" 74,\n",
" 72,\n",
" 79,\n",
" 60,\n",
" 55,\n",
" 70,\n",
" 43,\n",
" 82,\n",
" 82,\n",
" 57,\n",
" 84,\n",
" 82,\n",
" 62,\n",
" 79,\n",
" 44,\n",
" 77,\n",
" 32,\n",
" 61,\n",
" 61,\n",
" 60,\n",
" 70,\n",
" 69,\n",
" 77,\n",
" 51,\n",
" 73,\n",
" 70,\n",
" 81,\n",
" 54,\n",
" 57,\n",
" 68,\n",
" 73,\n",
" 95,\n",
" 87,\n",
" 78,\n",
" 74,\n",
" 75,\n",
" 40,\n",
" 69,\n",
" 51,\n",
" 36,\n",
" 49,\n",
" 67,\n",
" 76,\n",
" 83,\n",
" 87,\n",
" 64,\n",
" 76,\n",
" 68,\n",
" 88,\n",
" 92,\n",
" 93,\n",
" 51,\n",
" 82,\n",
" 52,\n",
" 58,\n",
" 70,\n",
" 76,\n",
" 81,\n",
" 53,\n",
" 57,\n",
" 89,\n",
" 58,\n",
" 89,\n",
" 45,\n",
" 74,\n",
" 57,\n",
" 79,\n",
" 53,\n",
" 73,\n",
" 46,\n",
" 51,\n",
" 36,\n",
" 76,\n",
" 64,\n",
" 84,\n",
" 85,\n",
" 50,\n",
" 68,\n",
" 69,\n",
" 67,\n",
" 63,\n",
" 93,\n",
" 61,\n",
" 55,\n",
" 96,\n",
" 65,\n",
" 81,\n",
" 46,\n",
" 72,\n",
" 53,\n",
" 87,\n",
" 38,\n",
" 80,\n",
" 91,\n",
" 88,\n",
" 52,\n",
" 41,\n",
" 72,\n",
" 51,\n",
" 47,\n",
" 76,\n",
" 78,\n",
" 82,\n",
" 61,\n",
" 66,\n",
" 84,\n",
" 54,\n",
" 80,\n",
" 74,\n",
" 66,\n",
" 70,\n",
" 71,\n",
" 44,\n",
" 54,\n",
" 80,\n",
" 95,\n",
" 59,\n",
" 74,\n",
" 48,\n",
" 91,\n",
" 85,\n",
" 73,\n",
" 75,\n",
" 69,\n",
" 38,\n",
" 27,\n",
" 79,\n",
" 63,\n",
" 82,\n",
" 89,\n",
" 74,\n",
" 41,\n",
" 100,\n",
" 84,\n",
" 77,\n",
" 51,\n",
" 91,\n",
" 72,\n",
" 70,\n",
" 48,\n",
" 82,\n",
" 66,\n",
" 66,\n",
" 55,\n",
" 66,\n",
" 100,\n",
" 52,\n",
" 80,\n",
" 91,\n",
" 67,\n",
" 46,\n",
" 66,\n",
" 65,\n",
" 69,\n",
" 60,\n",
" 52,\n",
" 71,\n",
" 44,\n",
" 51,\n",
" 70,\n",
" 62,\n",
" 73,\n",
" 74,\n",
" 90,\n",
" 58,\n",
" 53,\n",
" 57,\n",
" 85,\n",
" 69,\n",
" 72,\n",
" 96,\n",
" 64,\n",
" 61,\n",
" 61,\n",
" 58,\n",
" 80,\n",
" 60,\n",
" 52,\n",
" 73,\n",
" 71,\n",
" 83,\n",
" 72,\n",
" 54,\n",
" 69,\n",
" 62,\n",
" 81,\n",
" 100,\n",
" 59,\n",
" 71,\n",
" 64,\n",
" 53,\n",
" 100,\n",
" 75,\n",
" 58,\n",
" 72,\n",
" 64,\n",
" 60,\n",
" 67,\n",
" 80,\n",
" 100,\n",
" 69,\n",
" 60,\n",
" 61,\n",
" 67,\n",
" 77,\n",
" 60,\n",
" 58,\n",
" 48,\n",
" 94,\n",
" 23,\n",
" 78,\n",
" 86,\n",
" 91,\n",
" 82,\n",
" 54,\n",
" 51,\n",
" 76,\n",
" 45,\n",
" 83,\n",
" 75,\n",
" 78,\n",
" 76,\n",
" 74,\n",
" 62,\n",
" 95,\n",
" 55,\n",
" 65,\n",
" 77,\n",
" 86]]"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"grade_single = [list(data['数学成绩']),list(data['阅读成绩']),list(data['写作成绩'])]\n",
"grade_single"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "fe6334b7153b26f3",
"metadata": {
"ExecuteTime": {
"end_time": "2025-04-24T15:56:55.709090Z",
"start_time": "2025-04-24T15:56:55.654293Z"
}
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAdUAAAJjCAYAAABawosCAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAC4jAAAuIwF4pT92AABmLklEQVR4nO3deZwcVbn/8c8z2RcSsoLKJglrQJBVhYSAS0ggYTMSRIUQBAUEFy6XH1yQVVFcLrghGqOIEFZDUBJAFEhAhctqwr4ECFs2kpBMVub5/XFOpWt6unt6ZmqW7vm+X6969XTVqapTXVP11Dl1TpW5OyIiItJyNe2dARERkWqhoCoiIpIRBVUREZGMKKiKiIhkREFVREQkIwqqIiIiGVFQFRERyYiCqoiISEYUVEVERDKioCoiIpIRBVUREZGMKKiKiIhkREFVREQkIwqqIiIiGVFQFRERyYiCqoiISEYUVEVERDKioCoiIpIRBVUREZGMKKiKiIhkREFVREQkIwqqIiIiGVFQFRERyYiCqoiISEYUVEVERDKioCoiIpIRBVUREZGMKKiKiIhkREFVREQkI13bOwPVwsx6ufuaDJbzIaAWWOPu61ueMzCz7YDt3P3+LJbX3szsYGA3YCUw093fa+cstYiZjQA+AawGnnP3J+P4GqCbu6/LcF3m7p7V8qQymFl/d1/RzHn7ALXF/m/MrJu7b2hRBquISqoFWPDZeFJLj/uDmT1vZofmpa8BHjezy81sYJnrKPbb/wpYDrxkZh9u5ibk+zbwDzN7wcy2yGiZBZnZEDMr62It/qZ9zaxfE1ezM3A1cArht2o2M9u2zHR9zGyFmS00s7+nxmfxew4DfgvcCPSPy/088Azwv2Xm75tmdoWZjTSzLiWSDjKzNWb2ppnt0sJ8Z87MTjOzK81scvz+LTP7h5n9b4G0Y83sn2Z2tZmNacI6vmBmL5vZi2a2byNpF5rZMjPbo8kb03BZlnV6M/uGmd1uZp83s14lkv7WzOab2SVm1q0p+QAuAp6I+2bzAtPfjr/TNal89Wgs/2bWpcR5sEnMrGtWy2oxd9eQGoA+wHzAgS/nTXs8jv9R3vjj4ngHri5jHf2A14CLgb0BS027Li5nekbb0w9YAWwExrVwWX2BrkWm9QS6AUti/tfG9S6L45JhWRxfC9TFtFc0MR9fivP9vsh0A24DTkv/tnlptgfuJQTl7cpYp8Xf0IEzgC2Be+J2fqyFv+sBqf+fD8VxJ8bvdcC+ZSzj0Zj+MaBfHLcFsB3QN5WuJi5zYd783YHBwPZl5rl36u9jgDeBeXH9T8Rj6F3goCb+FtfG7RgXv/+/+H1KgbRnxWnvA1s3YR3j43wPlZH2zZi24P9RgfSbAxfmHyfxd18HvAO8TLhgmpc3zAdeBBYSai1GN7Ku7sCCmL/fAN2LpBsS1+3AF5q4P7oAb8V57we2KJBmcZz++fj9ZOAN4BuNLPtjwHrg7fibPAs8Hf9/HgP+r8DwOPBk/L1eIJxHlwEfAFu25DjMalD1bx53X21mTwK7AheZ2Y3uvjFOfgT4OHBgkj6Wyi6KX28gHOiN2R/YhnDwfQw4lvDPBeEknaXvEgLrGuAnZvaTMua5y92/XWD82cAFZrYCSKp7ugE9gN7AvsBLhOC5Iq5zPbAtsCPhBPU04QTTE+gV87ayWEbM7CEgqRLfSDh4No+TDzezJ+L6+wMXu/u1wP8AR8fhGDMb54WrUPcHNgNuMLOR7v5BsXy4u5vZcmAQsJQQMHrHdf8MOKjYvGVYlPp7fVzf783sm8DuwMGEoFmQmW1JuDgD+Jq7J7/n1wn7HzPzuOz1hAuED5vZSnL7LylVPE+oCSgqlgjmmdm/gFvjMj4MDCW3j7oRTvqfBB4oufX1JcdBbfxM/s8K7Zth8fMmd3+jCetIlr3ptoGZDQDuJASQ9wlBaB3h/xPgR0l1POH/ti+wFXC4x9sPZrY1YT9tQfgdvpcs393rYsmtKTUbqxuZfhbh2FpHONZ+GPPYnXCM/D0eD2fEcUuAT5nZpwj7u0vcloHAte4+q8A6xhCOv+eBw9y9UJ6SffZK/BxC+G1+aGYPuPvTRfL/HuH33LKR7SzXosaTtIH2juodcSCcyJKSw+dT408C/glcnhp3Rkz3ONCzzOVfRK4095G8adeQUUkVGEE4KXkThjpgr0byXUs4iD0uPylx7lNkvv+N0y9oxjbMS+VtQ1z32tT3tanpZwBHpvJzBTCgxLK/nJr3v8vIy/Mx7bHx++cIJ4ZLKF6C34xw0uhN8VJzv1Q+hqTGf4pwMdKVcOIbUmT+U+K8fy6wv9YSSj7zgX8TAtwHcf/9A5hLCAT/IZR6HivjdxgX17cR+ArhAqlvXpqk9uZfZSzvAOAOYGrMhwN/Bn4e85eUkq4H7kjN97c4bWwT/6dGx/n+kho3OLUPkt9nefzbCRdS7xEC3cZU2sF5y05qmtYBu+dNS46ZkucJcqXPPUqk2Z5wMboRWBXzWUc4PpJj/or4v7UkTl+VyntyDCfbd2KR9dwbl3tAiby8Epexc/xuwMOEC5TxJebbIs73TpHpZxBqFfqVWMaWcRnrm/I/0JpDu2egow7AmcDHG0mzZTzQVgDDmrDsJFD8ssC0JKjeRDiZdieckDcnXAF+BNiBvJNYgeX0IlSTJAf/uY2kfSSm+1WJdIOAPvHvi2L6iwglz8HFThaEE6QDn27GfhhCqJJPV5F/nlT1b1z/5oQgVxunfavM5c+O6R+mkSo+wgWVAycQrrAHEC7A9gY+WWSeY1L7ILmQep9wwl4aT3iLU9OTccsIJ831qWk/L7KOewgnvj3i967xswshGH8ovW9iHhakvveI/8tDy/zN7oz5+Wkj/ytJlWPJ6mvg8Lid78ZtdkKtRlLr4YRj7H3g/ThPT3JB6mfAj1LD/wK/Bi4ssr7RpIJq3PYuhGOrV17ahYSKivxl9CbUNnXJG9+fUPXpwFOkqmRT/5vlBtXdi0zvnvpfTC7wfkIImPukjunNgO/HdJfE8ZfG71/L25beBdbziZj2d6lxk2h4AfVcTLdtatw2hNqLscCPKXBBSO5CpkFQBYYTLg7eAkaV+K2SoLq2nP/dthjaPQMdZSAElaRu/znClX3+PY/8Ibnfsjx+f5ZwT+Qt4JEi69mDppUciw2HNrI9fyB3r+UhwhX2LgXSGaEKzwknsZLBOjXfRXGeiwpM6573/Zl4wOcfjAVLd2Wsu15QjeM+RghIdcC3m7CsHeJB351QfbmccJ/mJcIV+Ovx/2IR9QNc/jCnyPIPj9PXE+6nFRuS0sXSuK6llBFUCdVsG4EZqXH/As4nnODPTs2flMA8/k7pkooD15Txe42KaVeTV0orkPaG5LcBakqk60K8oCGUTp14PzGV/xPj927x8zMl9kWyrbNT6+gW/2+OJBVUgT8RLmo2J1ws/Y4QmC8l3J5ZEdNeQGgDcQXwC+BmitSCpPa5Az9JjV9N04LqbgWm1QC3xOk3psZvF7f5/5LfGtgz/v8sIR57hGDncVz/RvLxYNz+ofH7hwn/p8uA76bSPR2XeQBwfNyHT1C/RN+gxEqRoEo4J93byP79RUzb4YKq7qnm9Kb5dfv945C2rEjas+Jncr8xXy/CCT6p2kzufXSJ4xtlZhcTquVeAb5FqEL8N3C7mY1y98UxnQFXEUpT7xIC9apy1lFi3V2AdWZWF7dhPeH+E8DC2CAwue/zNvDRAsvYm7DtqwhX98m9wOR+XX763YH7CFVdk4HpZrYZufu2feK0RzweiQl3fxH4TlzOBgrvS+K2JPcd15CreiNuS7GWjsm93IfdfXSRNJjZ/YT7soe7+z/zpnUjd28v33mE/43LYtrPEe4V70M4wS4n3Jp4J/69mnAbo5YQULoTfp9BhJN5UfH/Jbknf627LymVPubtSEIbhO8B5xZK5CXuZRdIm9xjnRA/v+zu18f8/YbQSObr7n6NmfVOzbolIRgtIPyPJB4EvpjK22Ry1bfryP3vfpvwW/Ug/N4QarMK5fEvZnY7cBTQwyzTbkwDCcfF24SGeMk6F5jZNMIFfV/C/+ebcdt6Jse1u79uZmcTGgLVUkRsfT0S+C93T+5VfptQe9YFWBDT7EK4sINQVZ94l1A9/xShwPFEE7bxXMJF062E81ZiCHAOoXbw4iYsr221d1TvKAO5KtnRLVzO6LiceQWm7UI4EW8EhheZv+g9VcKJuzfhn6tHkfkPi8tfD3wiNf6cuNz5hAYemxGqmJ1wpd6kFqyULqkmJaHnigxJCf+5Ist+h2xK8/lD0kJ5X0IJ9aPxM6ky6wZ8gXAvcwdCyXVT1TPwQ4qXGIvdLz04znN/I7/ntJjuiNS4DwHblJjna3GetYST5LLUtl5CaGy3BQ1rDupV/6bG9yIEn4LrJJzInBCcy60qPjeVpx+TV10a09wD/J5QAnwipr2JUGK8P37/e/yN7iFUuy8nlKLSrZBvjGmPKrCOvVLLGU2upNot/r9dTbiw2Jz6txoaVP/G3+kjlKhpif9bo/PGZVL9G9MMSv2dtKg/MDWuZ/z/+ALhvuRY4NA4jCNc7BxHqho4Ne9+hMD9CuE4+Czh/mYt4aLsuxQ+vq4inH/KaoVLgZIqcGoct4hw4bB1HN+V3D30L6TSq6TaWcVWeT8nXOX9yd1fauoyPPwX1VLiCtPd/2pmowj3eP+VGv9DM9sGOJ1QcllKOPBfJLTqe7Gp+WlErbsXbEUa+2DeUmLe5YQLg1pCaWE9oaSYNMaoi+mGE6qkVhLuHxu5K+nkfnQvwgmmD+Hg60+o6k97jdCtZgOhWq+Yt+Nngxaccd8UsrHI+HzJ/8O2qXFHAz81s78C57n7s3nzPJ/6u45w62Ifwv79IeEeJACx5mBdzE8PYJvYijv5zXqQ67f+V0IVJqn5jyJUgUK4kCq3peWVhJP0UYSSzkgzO93d062ZP5u3HevIVaFa/D6KXAnxy4T9+CN3Tx8Lm8XPdwrkY2j8fCU90t03xP66pxAaSr0PrDGz9YT/t/4AqX6ySY1RL6CvmfV093H5K3P3V4FX80Y3qZ8qJZ4j4O5LU1/fj+PSJcWNwC/LWOciwoV82oWE4+WjhG4raacDtxMuPGcRLlJ+SGglPN3zallgU03LDu7+TKmMmNmJMS9PENpH3A/MNbOjCbUenwZ+4O6ljtF2p6Ca8w7hKnVdbBr/EOGfdS25ewP5khNSN8I/4b6EexV3EE7UaZcBhxCCw0WZ5z7F3R8mNLzJdwnhH3NnQnXiBkJJoskBvinMbAjhSvL9RhMDxYJx3jK/CfyAcNBPcPfnS8+xab7NCox+NzW9f8jCpm4pmFkPwv/GW3FUcx74sGPsHF9DODEnXTM+cPdJ5E5eO6bmOSCmG0L9AJp4kFAC+QfhwuP/CPv0RML/7FpCVdkqQpX1OnL3UOtiXpKq+KQauC+5biwAmNkEQstbI9wfvTt2QVlDaHVZF9PVxDTJZ3JxcwYhqB1AOEYeMbMr3f2cuIrhhONmlZeoCo77YVtCiWU14YKjS2qezePnwgKz7xo/G3S9cff3zGwH4Ig4aj3ht1tH+O1WEEp8NYSLjx6ECzWj8W4vaclFwZoynwNR8HaPhQfMrE1dUKyJ+UmeftTT3ZemLgz2LrQcQhuQQl34biX8Xv8kXKz2J9yj/zuhIaMTgmiSn+T42TJ+H0Bo5PRJQtX//sB6MxtY4uITD93I6ghdgZbEWxn3EVqnG/Bjdy94C6EjUVCN3P0zyd8WHuu3NeHgqqNwHzkIJ8X01WSNu88jVK1sEu9FvQjcDTzfnFJqc8UT0WhCq73jCCeE1YQTxkDCQxJeNbPkqvM/hKrBTB6RGJ0EXGFmf3H38S1ZUAzQvyOUZO4GJrn78iYs4j3CFfhqwoE/k/ol/6OAaWaW3L9N+ibeBPw0pkmXJhuT/H98iFC1lS+5ep8fPz+Wmvap+HllErjSYjCZDWBmUwhVnN919//EJL3i/q/zRh4jF9N19bx+iGb2LUI1bA0hIH2JvAvGMgPERELgPIJwAZv8lrj7y2Y2CPiBmaUDf1JSTfbBa4TffmtCVfQdhBNucm9xCLkWo/mSvuWFAi7AfwHfBFaXOvGnxd9sQInphwOPu/tb8YJjI6GGqA+hVL2EcEHXh9DQaE3Me++43D5FFn0JcHoMmhuJAT62CehKaKR4YpyGuz9XJH9QuLDwR3f/fWobHycUME7K/20sPFY1iSMXmtkPCBdJ6X+Ktwm31zYn1Te4EHe/Li53M8L94KTbjRH6nC8GbmvLc2hTKagW4OGmf5dCJzIIz/klVJEkV9pvEKpECl61xn/EaYSTdU1cxgjCvZD33L3kAx9i45/NCPd81nuRju4xeG9FODHvG4eDyB2c6wj3Pb5HuEI9m1CK+CjhxJScnOrMbEncnr+5+yml8leG5EBc0NwFxG2bQiidDox5e4MQrDcli0Py4IG+wIvufvamjIRAtCAuMyk5py+akvs5qwm/y3rCiXgDuRL9Vlb+8057xs873T1pXIOZ7US4v5zk4XnCSXXv+ECRXQgBZDFwV6kVWHhU4g8IrTC/nzf5EOAuM0saxiUBC3K/VXKv+RxCdW3aU4R74D0JVXJJte8HcXndCSWwpGo5X/K/t4BQnX058Iy7v52XriuxwVgJd8btO4bQCvcLhNasiQ8BrxYp7d5GqPZ/iAINEmNpdTzwsRisSgXWbsASd/8Nhauak1L7lcBGMxvr7gsJwZJYY3Eq8DN3v8TMRhNqG55290+UWG9iHeH3XE7sRkPYFy8SSpXpB510M7MzyljmJnm/3+WEUuvX3P21mP8tCLdJRhDOSYmPEY6Rm8k9FelJb7xBWxJEd4nr+jTh4mszwoXzNwjP+r6SsN+vMLOlhP/3a5uybW2ivW/qVtJAOIGcSuhm4YSrzm/QjK4hhGql5Go86eqwmlzXio007PJQsJFMXN7/kmuynz88QWh13KALBOFk+SVCiWdNgXkPL7K+iyjdUGlV6vv/xHEXx+9Jl5iCDZUKLG9vwsnQCSeM5XFI8riSXD/GpKoz+d1ml1ju6JjmbwWmbUeBBmfk+pSOKDPvR8f0NxXYJgfuSY27P44bSSjJOSX6gsZ5esf5NsZlbhY/v0AImp9M9gfFG44tjWlOLrKOjxK7d8RlDibXeCt5OMMRBeYbktpHRRtcxbRJo5VC+yJpjHJr/J508fg98Fb8e1BM8+cy9kmy3/+SN/5/afj/X2wo2IUqtawTYrrFpBoVxWnT4rRv5uWn0QdlFFjPpDjvggLTVpWxHQ3mS81/fExzb974LnHZKwldX34W0z2dl+44Yj/aRvb5O4SLo/fJnfv+QriPfizhfiyE8++Z5LrwvEruOFVDpQr1KXI39W8BzvDyG2wU44RS4xrCP9NmhKv29YR/suTeW89iC4guIxzIvQkluH8QqstuIQSGglfeHkrJ1wPXxyq4LxCu+EcQ7u/dW+6GmFkfL/wYs+Q+ZqFquVLL24GwXRMJJ/ObCc8TXRQbztxOuBret9D2mVlPQnV3lp4mlP72IldlW0pyJZ//KMbNCoy/i1Cz8DXClboTHrRfkJl1J1TXb0+owr6D0CoVQont5lglCDDX3Q+N821NCEYfxO8/IpQSCzaq8tDoJvnbCdWWie3i54ICsw5N/V3ucbKdmf1P3ri+6S+pY+4R4AQz25ncfe4nylxPIcn2f8Pdf14oQapUWerebx9yjyi8yOs3KoJcXhc3O6dsagB0cer7ZMLTh65KJVvt7n0bzMymR1cWGt8T+G9Cbdw64KpYlT2M0OhsAeH++Hx33xhrkb4A7GZmgzzcz92BcK7sZ2YT3P34UtvioavPqYTz153u/q6ZHUBo0W1m9kr8+w/ufrWZfZxQnZz1Y11bTEE1svAWiqRp+hovXbW3zt2/kDe/EU7gyfNs+3vxZ15CqOZYTnhCzKZ/7lTV0EwPDViS8cmj6gpWSXu4sT+OUC31YpznWUKLTU/dqyokaaySVOP19iJV3wV83MyuJrTgvI6G1Y+Q64u6IG98wZtxZrYX4f7WcYT/0TcJfQ/vjNM/ROgCAeFBD6UuGLI+6J4gBNVRwB/LSL91/MyvAkuCarrx1s2Ek/EX4/db3L1o4Hb39Wa2jBBU1xEC19OEe1il/vdeBbqY2eHu/tcytqGg2PbgI3Hd+S2TIRdUV3ojtzhShhEevFCO++Ln5wkXn1C4gV5T/czMftaC+S8gtEpfQOHqyeSZxa8UmNYU5xIugJN73LsAZ5vZO+5+UwuWW0Po3540zLozNc0J1dZPbRrh7mZ2L6Fke4SZzYjz9CP0My2rcZG735D3/SEz+yghYJ9MaCz1OuGWzhOw6bnXHYqCas6/SZVqYiu0jeSebVtH7vfqYaE7QtK6MenGkbaUUL1RkLu/3pTMeXiof8mrfW/YnD05YS+kRDecqBvh5Ly6WEA1s+Rex26EkhrkOuEDdLfCr5XaP37OyxvfoMuAmf2WcO8Uwsn6J8BlHlsOx3tVjxJO5hsILwnIX2Yvwr2ls9y9VNed/HVv6e4F75GlzCGU6g43s5oyLj6S1rz598GHxM9NJVUP9/LvJDR0W024592YU4E33f3dItPr/TgWWjd3IVxszM5L29RXZ30pfv7TCzdsS4JqU2pz7vNUo0HYdOLMvweLuz9vZk8TfoPk2bZzmrCuYq4nF7Dz7UwoxRVk4cElyb3h7+VfnMdt2ZGQ35JdTEqJhYDzCU9MO5hQmj+P8NCEqWb2WEzap1iJtBh3rzWzOYTj9mnCffX5yeCFHxDzR0JQPZ3QNmMnwgXOZ71+t6eymNm3CReefyH3+MlPE1q8d2gKqoUl9+7yg2oduYYX6wm/Xx257gMdTXLC/4o38oLyWOp4ldINNAYS7iEnlhNaDP+NcDKbT2yMkVrupwj3S15y9zfzlte/wDrOJdxjehw4x90XpCd6eNvHg4RSbDeKdxdwwr3GssRgM9fMDiqQzySNEba1lnCf73PkWt+mu3akJe/rfNbMPkHoeF9L7sLh5dTytyF3AZK8FKAkd3+8SF77EgJz/js2t03yUyC/BasJiyy/P7mng00vkqw5QXWohX7MaZuXSP9LcrdkfuPZvND93x5bv+aL1b8Fg2qsNv094bzwevw731fi52PeyEvDzWwooSZrTd74gYRbH0YINgdDuPA2szMJNSlJKXg9xRuAlSqNH++pbmV56+9e4CLqHkJtRXKx/RShPUZzAmofQk3V1oS2G28Tnv712yIXbx2KgmrOCFINXYrcoxtNuJ+yzt2HFJiefixe7/zpVeBRQqOCG4EZhPdR1jsxxwN+Hblq1+Sezx/N7CzCA+h/QejC0CAIxWrs3fNPJHm+RWiwsKJASWAioRr1aY+PYyyDEbohDCNc/Z+WmtY3tp48iPAUrI+b2R2EoH4audLejwkngnRedieU/tcQfrs6Qof5zWOSV4kPwYgB9R5Cdd5KQtXZrwlBOLk46eXu96WWP4jwv5a8aGEnwm2FfQjvvRya2h/JyWhU/PxXvEjoSbgv/SdCNXu5fkGoiVlA4eABzQuqu1P6wSD50m0NPjDL5JGAza3+vYpQiwPhHcGFSqlJ7UPRe+Up44EzzOxMd58Tl7E5oUXs9oRGbK+la2o8PABibkwLsKHE/eGi2+j1+2l3JVy8HkK4kOxKaEyXNpHc4wo3Asd47pV4ewL/KXLRWWjdq+NF/gGEWptJhN/tbDOb7u7HlbOcdpNFa6fOMpBrpdfklmaEE94ehIPhI4QT0uaEKo4+5Boj/Sau42Zyz67dLKbfilB1tBfhJF/wpcSpdf4rLmt0GfnbLqZdUiKNUeAxcyXSJ2/IWEwIWAvi92cos/VsM37nX8V1/KCMtMkjBJMW1y8RqrBuJVx157eUnBfn+0T8Xhf3afLbXQv1HnH3+zj+ltS4n8d0RxMfNUk4Qb0V084ilCaTt7N8O6Y5ixCcz0st67wCeUyGJwps72BytRHJ83hfIVTRlfv7Jk8GS1pplnqDSPJA/XIe1J+0FH6YUMWaHg4k1fo3Nc9JhAuzjeTeiHMHBV6knTdf8jD+WXnjfxTHTyc0Fis0/CSmub/Acn8apy0i7zGihIukpKX0c9R/a9BoCrT+JffC9jfzlvMM4T5q8pD8eRRv/bsq7vdCQ8HWv4R3Rp9JaLfwIPVbEdeRag0c8/Ob1PSkZ8Q/iQ/sj7/ZA8DBeetJWnUXfPVbKl03wq2Gx4AjiyxDr36rxIFwpdbcoHorxU+AzR1KPmOTXFBtyvBeBr/ThwnVU04oIX0ujh9CrmvMasKDG7LcPx8m19Wm0UBBrsuAEzql70R4+EMybi3hkX3nx33fJzXvPTHNk+S6SMxPTf84uTfMFOuWNIjQjSPp/nM7uUD7WXIvELic3LOpp6bmT7rlvE1oJPZ1QnXzZgXWtTe5rgg3Ei7W7ktt69RC8+UtY3tCdX8yz9kl0u5HrovXRWXsi61i2kJdavYkFVQJ1dS/SP1/fZ7wMJCkS9gqQuA/CBo+k5nwFCon3L9Nj786jj+jRD6TgHx/kennEF+zlhq3E7nXMK4i773D5ILqa/F/ooZQ4k26Ol2bl34fUu83JfRPXVggL8mzhksNrxeY7+C8NPMJgXECMDCm6UJoULeQ3PHzBcItogVx3AuEC9DkPHRN3nq2juPXEHsgNGNIn1eLvgmpLYd2z0BHHwhVWKcQWp/dHXfe+81YTn5QXUdoabyEcFJ8Ix5UC+Lna3Hcm4Qr3xU0fPVYY0H10ZhuNqHUVGpI8reuBb/VboT7NMnJdCkwJi9NL3Lv43RCwCj5HtMS6/sSoSr4W4SO4cmD+hfSSN9hwtVv8k7KDcR3vRIeIP4woVSyeYn5d6DhSeuC1PSklPZ4kfm3JPfeTSc8vKEmL80JNOynnH5oeg9CdW6xh/l/iFBNPSu1nOnEGg5CzcOp5N5h+hKwf4HlfIRQCktv7+UF0vUmBP93yd0Tdgr0YS0w787kBVVCKeg/qf/7awkXG4vi9/dJvVKMEGxeTq33L0XWNTFOfzRvfFLiKhVU/ys/n4X+t1L757zU7/YeBWqNyNV8FBo2UOLB+nH+t4CleeNq4j5fS6g+LTQ4BWqmCNW7rxFu3exYYPqkOD3J499I9UMmPFEpPT0ZRuUtZ5cS292coejx2pZDu2egow/E1xzl7bx/NGM5HyZcjfenme8RTeWnP6GKsGRVLLkqzNFlLHe71PYNbGKehlP/hehOqL7+cJH0yWP/krRlVz/mLefQAgfWWoqUDAv8jj+O83yjmeufQK7qeAV5b24hlECK/vZx+iJKBB1CKSwJeiUfOJA333jqP8zjFULjk0JpR6T+x+cRg0Le/8ZtcXotRR4SEdN+J29/3EgZJQhCFXiDYEXuwSFPEE7CNYQAPw/YucByehHeovIeBd5HGtOcnPwmeeOTC8sGQZXQRz19UfGnMrZpD3LV7U9S/M1U3ePxsoRcw8jVhMZ6R5axnuRhJ+lbD0l1+qoS8yXPhy5Umi/1Bp5ehN4SLwNHF0kzkNxbg5wCF5fk3s1bsvq3kW0fRO791ls1dzlZDu2egUoYCPfplhGuyM4mdLBu93yVke/kvtzoNljXpHgymEuqNFUifRdCg5QLW7jeR+MJ6+Z4Qi/rtVOp+U8pdFJpwvwHAX+mkZfGl5i/TxlptibcUy15r7DAfGfE3/hoGr8A2yKm3bpEmtOB7RtZznaERjjfAHbJ4P+qD3lPJIrje7X0dy0wT09C1XK3ItPfJJTCHwT2KnOZ2xBKfCXbP7TwN+pLvL/aVgOhFqTg6yfz0h1AqDpuUOKt1iF51JiUYOH1Th3uyR0dTWy1+5/GU25KX6wbiohIRVJQFRERyUhTn6AiIiIiRSioioiIZERBVUREJCMKqiIiIhlRUBUREcmIgqqIiEhGFFRFREQyoqAqIiKSEQVVERGRjCioioiIZERBVUREJCMKqiIiIhlRUBUREcmIgqqIiEhGFFRFREQyoqAqIiKSEQVVERGRjHRt7wxIjpn1Bw5KjXoDWN9O2RERKUd3YOvU9wfcfUV7Zaa9Kah2LAcBd7R3JkREWuAIYGZ7Z6K9qPpXREQkIwqqIiIiGVH1b8fyRvrLjBkzGD58eHvlRUSkUS+99BJHHnlketQbRZJ2CgqqHUu9RknDhw9nxIgR7ZUXEZHm6NSNK1X9KyIikhEFVRERkYwoqIqIiGREQVVERCQjCqoiIiIZUVAVERHJiIKqiIhIRhRURUREMtJhgqqZ/c3MPDV8vpH0HzGzn5nZS2a21swWmdldZnZ4I/PtYma/M7PX43xvmdmtZnZgtlskIiKdTYcIqmb2ZeDTTUj/SWA+cAYwDOgBDAHGAnea2S+KzHc08DgwmfCqoh7Ah4BjgAfN7NwWbIaIiHRyHSKoArcDA+LwUKmEZjYIuBPoDzxLeM3Qh4HdgB8DdcBpZnZO3nw7ATcAPYGHgc8QAuo+wO8BA75vZl/IaqNERKRz6RDP/nX31cnfZraxkeTnAoOABcAB7v5eHP82cLaZvQT8CrjQzK5z93fi9MsIJdNHgYPdPXk+5TvAZDN7F/hv4KdmNtPd12awaSIi0ol0lJJqWczMgC/Gr+enAuom7n4N8AjQBzg+ztcPGB+TfDMVUNO+S3i7woeBwzLOuoiIdAIdoqTaBLsQgt4a4M8l0k0D9iMExx8DBxJKqQvc/eFCM7j7OjO7gVBaPQy4LcN8V5W6ujqWLl1adNqyZcvqjRs4cCA1NcWv3wYNGlRyupRWan8k05uyT7Q/Wk77pPOqtKCavAftKXdfUyLdnPi5R958/2pk+XMIQXWPRtI1ysyGEhpPNcWwlq63LSxdupShQ4dmtrxFixYxZEhTfypJaH90PNonnVelBdUPxc9XG0n3cvwcaGa9mzHf1s3IW77TCFXKIiLSSVRafULf+Pl+qUSxkVFy37RfufMBK1LziIiINEmlBVWLn96EtNaE+SzvU0REpGyVVv27Kn72LZXIzHoC3eLXleXOR66EurJZuavvl8AtTZxnGHBHButuVYMGDWLRokUFpy1ZsoRdd9213rhnnnmGwYMHl1yeNF+p/QFN3yfaHy2nfdJ5VVpQfSt+btNIuqTBz3J3X21mTZ1vYXMyl+bui4DiR1UBocdQx1dTU9OkRhODBw9WI4tW1NT9AdonrU37pPOqtOrf+fFzDzMrdUGQPMf3qbz59mlk+fnziYiIlK3SguqzhNJqP2BMiXRfiZ9/jZ9zCQ2XdjGzEYVmMLNuwHF584mIiJStooKquzvh+b0A3zOzXvlpzOxE4FOEB0T8Kc63EpgZk/zYzApt9/nAtoTHFt6Zbc5FRKQzqKigGl0BLAU+BjxgZmPMbMv4SrfvAb+N6S5x97dS8/0PsI5Qwr3LzEaa2RZmtqeZXUOuT+m39NxfERFpjkprqIS7LzWzCcBdwL7A7ALJfuHuV+TN97yZfZFQ0h1Dw+rjOuA8d5/eCtkWEZFOoBJLqsTn9+5G6LaygFACXUy4F3qYu59RZL7bgb2A64A3CfdZ3yF0fTnQ3X/Q6pkXEZGq1eFKqu4+usx0C4HTm7H8Z4ATmjqfiIhIYyqypCoiItIRKaiKiIhkREFVREQkIwqqIiIiGVFQFRERyYiCqoiISEYUVEVERDKioCoiIpIRBVUREZGMKKiKiIhkREFVREQkIwqqIiIiGVFQFRERyYiCqoiISEYUVEVERDKioCoiIpIRBVUREZGMKKiKiIhkREFVREQkIwqqIiIiGVFQFRERyYiCqoiISEYUVEVERDKioCoiIpIRBVUREZGMKKiKiIhkREFVREQkIwqqIiIiGVFQFRERyYiCqoiISEYUVEVERDKioCoiIpIRBVUREZGMKKiKiIhkREFVREQkIwqqIiIiGVFQFRERyYiCqoiISEYUVEVERDKioCoiIpIRBVUREZGMKKiKiIhkREFVREQkIwqqIiIiGVFQFRERyYiCqoiISEYUVEVERDKioCoiIpIRBVUREZGMKKiKiIhkREFVREQkIwqqIiIiGVFQFRERyYiCqoiISEYUVEVERDKioCoiIpIRBVUREZGMKKiKiIhkREFVREQkIwqqIiIiGVFQFRERyYiCqoiISEYUVEVERDKioCoiIpIRBVUREZGMKKiKiIhkREFVREQkIwqqIiIiGVFQFRERyYiCqoiISEYUVEVERDKioCoiIpIRBVUREZGMdG3vDIhI+d555x0WL17cpHmWLVvWYNwzzzzDwIEDm7ScrbbaigEDBjRpnmrn7rzyyivU1tY2ab4s9omZscMOO9CjR48mrVtal4KqSAVwd6ZMmcK0adMyWd7o0aObPE9NTQ3f//73OeecczLJQ6VbtmwZn/3sZ3n88cczWV5z9knfvn2ZOXMmBx98cCZ5kJZT9a9IBZg/f35mAbW56urquPDCC1mzZk275qOjuOGGGzILqM21atUqLrroonbNg9SnoCpSAd588832zgIA69atY8mSJe2djQ6ho+yThQsXtncWJEXVvyIVqqamvGtid8fd640zM8ysWfNKcdonoqAqUoG22mor3njjjbLS1tXVsXTp0nrjBg0aVFYAWLlyJf37929WHjubL33pS/zxj38sK21L9snMmTM54ogjmpVHaX0KqiJVrqamhiFDhrR3NiRF+6R66Z6qiIhIRhRURUREMqLqXynokUce4bTTTuPFF19s0nx1dXUNxm2//fZlN+BIDBgwgDPPPJNvf/vbTZpPRKQ9KahKQccffzwvvfRSJstatWpVk+dZuXIl3/nOdzjkkEPYc889M8mHiEhrq9jqXzM70cy8CcPeefO/1Ej6I9tp09rdunXrMguoLfWf//ynvbMgIlK2ig2qTTTT3R9LvpjZIGBYO+ZHRESqUCVX/94AzCgxfRvgcaALcFHetP3i55NAsYdmrm5+1qrPTTfdxFZbbdVourq6OlasWFFvXP/+/cu+p3riiSc2+T6uiEhHUbFB1d3XA+uLTTezHxAC6gx3fyJv8v7x8z53X946Oawue++9N8OGtX7hvm/fvq2+DhGR1lKV1b9mti0wGXAallIhF1T/3lZ5EhGR6leVQRX4H6AbcLu7P1VgelL9+xMzW2Vmq83sMTM708y6tV02RUSkmlRs9W8xZvZR4ARCKfXiAtN3AJI3Ae+UmrRXHI4xs8Pd/f0W5mMo0NTnkKnxlIhIBau6oEqulHqLuxfqj7Ef8ABwC/AQ8CYhyB4FXAiMAn4NfLGF+TgN+G4LlyEiIhWkqoKqmW0PfAWoo0ApNbrF3f+UN24xcIWZPQrcAxxnZlcWaOAkIiJSVLXdU72AcKFws7vPL5QgthouyN3vA+6MX4/JPnsiIlLNqqakambDgS8RSqmXtGBR9wNHACNamKVfEqqYm2IYcEcL1ysiIu2kaoIquVLqDe7+bAuWsyZ+9m5JZtx9EbCoKfOYWUtWKSIi7awqgmps0Xs88AFFSqlmtgXh6Unr3f32EosbHj8XZ5pJERGpelURVAmtdrsAf3T354uk6QXcCGBmu7v7vPwEZtYd+EL8+lBrZFRERKpXxTdUMrOdgOMIpdRLi6Vz9wWEZ/0CXGlmhbb9J4RnBr8PTM80oyIiUvUqPqiSK6Ve7+6NPYn9gvh5KHC3mR1kZlua2SfN7Hbg9Dj9v9z9vVbKr4iIVKmKrv41s52BScBGSpRSE+7+FzM7D7gc+Ewc8l3s7r/ONKMiItIpVHpJ9buEbbjO3V8uZwZ3/z6hwdJMYCmwgfBUpenAJ939otbJqoiIVLuKLanGB99vTSilXtaUed39AcKjCkVERDJTsUHV3TcAB5rZnu7+anvnR0REpNKrf3H3J9s7DyIiIlAFQVVERKSjUFAVERHJiIKqSAWqra1l0aImPVq6WV577bVWX4dINVFQFalAy5YtY9iwYVx66aWsWrUq8+W/++67nH766ey1116ZL1ukmimoilSAESMavolw1apVXHjhhQwfPpxrrrmGDRs2tHg977//PhdddBHDhg3jl7/8JRs3bqw3fcCAAXz4wx9u8XpEqpWCqkgF2GqrrfjlL39Jjx49Gkxb9O67XPCd0xi5967cedM0fNViWL2kScP6995i6s9+wP67DeOSiy9m9erVDdYzYMAAbrjhBrp06dIWmyxSkSq2n6pIZ/P1r3+dww47jAsvvJDrrrsOdwdgUG9j8X9tBiyCZ78ZhibqDkwBpkyGIVcaS2p907SePXty1lln8d///d8MGDAgi02pSq+88gorVqygf//+rbYOd+epp55qteVLy6mkKlJBttlmG37/+9/z1FNPMW7cuFZdl5kxefJkXnjhBa644goF1Dw1NfVPnw8//DA77rgjv/3tb/nggw8yX9+jjz7KAQccwIUXXlgyH9K+tDdEKtDKlStZvnx5q67D3XnvvfcKVgUL7Lvvvg3GLVq0iK9+9avss88+PPjgg5ms56233uKEE05gv/3245///GeD6fvtt18m65FsKKiKVJBnnnmGI444ggMPPJCHH3641dc3Y8YMdtttN0499VTefvvtVl9fJTniiCO45JJL6NatW4NpTz35JMeMHc2USUfw+nOPN/keN6uXsGbpG/z0svP51B478sfrriuYh89+9rP87Gc/a+1NlSbQPVWRCnHFFVdw/vnnU1dXV2/80lpnyJXvs8ceH+PCCy5k1KhRTV52XV0df/7zn/ne977H0tqV9aZ98MEHXHvttVx//fX84Q9/4POf/3yLtqNamBkXXHABkyZN4uyzz2bmzJmbpuXuc98P0+9v1vJ7Ad8CvnV6lwb3uYcPH86Pf/xjxo8fj5m1ZDMkYyqpilSAV199lf/3//5fg4AK8NHtt+dnU2/gnrmPM2rs0dBncJOHms2GcsxXTuXhp17gJz/9KYMGDWqwntraWqZMmZJJ151qssMOO3DHHXdwzz33FOz6lKV+/fpx5ZVXMm/ePCZMmKCA2gEpqIpUgBdeeKHBuMGDB3P11Vfz7LPPMmnSpEwarPTo0YNvfvObvPzyy5x33nn06tWr3vSVK1fyzjvvtHg91Wj48OHssMMOrbqOoUOHMmLEiIJdq6RjUFAVqUCDBw/m5Zdf5hvf+Abdu3fPfPn9+/fn8ssv5+mnn8582dVm1apVnH/++eyyyy7MmDGjVdf10ksvMW7cOMaNG8dzzz3XquuS5tE9VZEK1LNnT/r169fq6xk6dGirr6OS3X777ZxxxhkNGnEl97l33mknLr3sUkYfNLrJy164cCGXXHoJf/7zDJam7qcCzJo1i3vvvZczzzyTK664omBjKWkfCqoiIs0wd+5cPv/5z296CEfagIEDufjSSznllFPo2rV5p9mtdhrMtdffzgkPPcRZZ53FY489Vm/6xo0b+clPfkJdXR0//elPm7UOyZ6qf0VEmuHee+9tEFC7dOnCmWeeyYsvvshpp53W7ICadsABB/DII48wbdo0ttxyywbTZ8+e3eJ1SHYUVEVEmmH9+vX1vu+666785z//4aqrrmLgwIGZrqumpoYTTzyRF154gSlTppTMh7QvBVURkQzstdde7LLLLq26js0224wJEya06jqkZRRUpSxnnXUWzzzzTKstf+XKlVxwwQWtug4RkdamoCoNdO3atUH/xL/+9a/svvvunHzyySxcuDCzda1bt46rrrqKYcOGcdlll7Fu3bp609uihauISFYUVKWBLl26cOKJJzYYX1dXx9SpU9lxhx249NyzWPHWy816pimrl1D3/iJuu+7XHLDnTnzrm99kyZIlDda3/fbbM3r06NbfYBGRjKhLjRT085//nBEjRnDxxRezePHietP61Kzjgp6/h2t/3+zl1wDHAMcc2/D9nV26dGHKlClccsklrfpuShGRrKmkKgXV1NRw+umn8/LLL3PhhRfSp0+fNlnvkUceybx58/j1r3/NFlts0SbrFBHJioKqlLTZZptx8cUXM2PGjFZ5HF7amWeeyW233cbOO+/cqusREWktCqpS0uuvv86JJ57I5z73uVbvD3f11Vez3377cd9997XqekREWovuqUpBa9eu5cILL+Tqq69u0CI3ea7p9ttvzyUXX8yYMWOatOwFry3gggsuYPbsuzctL/HYY4/xmc98hjFjxnD11Vez4447tnxjRETaiIKqFPSVr3yFW265peC0oVtswXe/+11OPvnkZj3Ie7tdB/PH22Yxd+5czjnnHJb8858N0tx9990ccMABPPPMMwwZMqTJ6xARaQ+q/pUGNm7cWPAVVn379uXiiy/mpZde4utf/3qL34xx4IEH8tBDD/HnP/+ZnXbaqcH0JUuW8OCDD7ZoHSIibUlBVRr44IMP2LBhQ71xJ5988qaWwH379s1sXWa2qcXvtddey2abbVZvem1tbWbrEhFpbQqqUpZzzz23Vd+t2bVrV7761a8yfPjwVluHiEhrU1AVERHJiIKqiIhIRhRURUREMqKgKiIikhEFVRERkYwoqIqIiGREQVVERCQjCqoiIiIZUVAVERHJiIKqiIhIRhRURUREMqKgKiIikhEFVRERkYwoqIqIiGREQVVERCQjCqoiIiIZUVAVERHJiIKqiIhIRhRURUREMtK1vTMgIq2rrq6OpUuX1hs3aNAgamp0TS2SNQVVkQrw8MMP1/u+cOFC9txzz7Lm3bhxI/Pnz683bsSIEXTt2vjh/8EHH5SdRxFRUBWpCO+//36DcU899VSzl5cfZEUkG6r/EZGy1dTU0L9///bOhkiHpaAqImWbPHky/fr1a+9siHRYqv4VqQBf+tKXeOGFFzZ97927N0ceeWRZ865cuZKvf/3r9cb96le/anJw3G677dh///2bNI8UpsZj1UtBVaQC7LXXXvzlL39p1ryLFy9uEFSPOeYYhgwZkkXWOq0bbrih3vfrr7+edevWlTXvunXrmDlzZr1xEyZMoEePHo3O++abb5afSWlzCqoiIs3w+uuvNxh3yy23NHt5+UFWKpPqGkREKlifPn3aOwuSopKqNLBhw4YG48444wyGDRvW6Lzuztq1a+uN69mzJ2ZW1rrfeOON8jIpIgAcf/zx7Z0FSVFQlQbq6uoajJs9e3Y75ESk4zr33HO54oorNn3ffffdOfroo8uad/Xq1fzoRz+qN+7ss89uUqnTzNh777057LDDyp5HWp+CqnRoPXv2bO8siBT0/e9/n+9///vNmnfx4sUNguo555yjxmNVQPdUpcPafPPNGTVqVHtnQ0SkbCqpSgPdunVrMK7cLhhr1qzhD3/4Q71xJ5xwAr169WpSHgYOHMjxxx/PFlts0aT5RETak4KqNNCrVy/cvVnzLl68uEFQvfLKK1WtJSKdgqp/RUREMqKgKiIikhEFVRERkYwoqIqIiGREQVVERCQjCqoiIiIZUVAVERHJiIKqiIhIRhRURUREMqKgKiIikhEFVRERkYwoqIqIiGREQVVERCQjCqoiIiIZUVAVERHJiIKqiIhIRhRURUREMlIVQdXM/mZmXmL4Zl76j5jZz8zsJTNba2aLzOwuMzu8nTZBRESqQMUHVTMzYJ8mpP8kMB84AxgG9ACGAGOBO83sF62RTxERqX4VH1SBnYH+wFJgIDCgwPArADMbBNwZ0z8LHAF8GNgN+DFQB5xmZue07SaIiEg16NreGcjA/vHzfnd/r5G05wKDgAXAAan0bwNnm9lLhAB8oZld5+7vtEaGRUSkOlVDSTUJqn8vlShWE38xfj2/UAB292uAR4A+wPFZZlJERKpfNQXVb5nZCjNbY2bzzexCM+uTSrcLoap3DfDnEsubFj8Pa4W8iohIFavo6l8z6wXsHr8OT03aFbgY+IKZfdbd3wZGxGlPufuaEoudEz/3aGHehhIaQDXFsJasU0RE2ldFB1Vgb+ApYDrwIOFeaR9CS95LCIH0FjMbCXwozvNqI8t8OX4ONLPe7l7bzLydBny3mfOKiEgFqvSg+qi7F+pO80sze4Bwf/QA4Eigb5z2fqkFuvtaM1sPdAf6Ac0NqiIi0slU9D1Vd19XYtp84Dfx6zGAJZPKWLTlfYqIiDSq0kuqjbkfOItQDfxoHNe3aGrAzHoC3eLXlS1Y9y+BW5o4zzDgjhasU0RE2lG1B9WkQVJv4K349zaNzJM0Flru7qubu2J3XwQsaso8odePiIhUqooMqmbWF0ie03ubu28okjRpEbyY8GhCgD3MrKu7bywyz4Hx86mW51RERDqTSr2nuh74A3AjMKZEui/Fz4cIjyV8i9D4qNQ8X4mff21hHkVEpJOpyKDq7uuBu+LXS82sd34aMzsb+ATheb5T3d2BG+Lk78U+rvnznAh8ilBt/KdWyLqIiFSxigyq0cXARmBP4EEzG2tmHzKzj5vZtcCVMd0P3f2F+PcVhAfvfwx4wMzGmNmWZraLmX0P+G1Md4m7v4WIiEgTVOQ9VQB3f9LMTgKmEh4CcVeBZFOB/0nNs9TMJsS0+wKzC8zzC3e/ohWyLCIiVa6SS6q4+x+B/Qj3Vt8FNsTPmcA4dz/Z3T/Im+dhwqvefkl4AtM6QkOmvwKHufsZbbYBIiJSVSq2pJpw9yfJvX2m3HkWAqe3SoZERKTTquiSqoiISEeioCoiIpIRBVUREZGMKKiKiIhkREFVREQkIwqqIiIiGVFQFRERyYiCqoiISEYUVEVERDKioCoiIpIRBVUREZGMKKiKiIhkREFVREQkIwqqIiIiGVFQFRERyYiCqoiISEYUVEVERDKioCoiIpIRBVUREZGMKKiKiIhkREFVREQkIwqqIiIiGVFQFRERyYiCqoiISEYUVEVERDKioCoiIpIRBVUREZGMKKiKiIhkREFVREQkIwqqIiIiGVFQFRERyYiCqoiISEYUVEVERDKioCoiIpIRBVUREZGMKKiKiIhkREFVREQkIwqqIiIiGVFQFRERyYiCqoiISEYUVEVERDKioCoiIpIRBVUREZGMKKiKiIhkREFVREQkIwqqIiIiGVFQFRERyYiCqoiISEYUVEVERDKioCoiIpIRBVUREZGMKKiKiIhkREFVREQkIwqqIiIiGVFQFRERyYiCqoiISEYUVEVERDKioCoiIpIRBVUREZGMKKiKiIhkREFVREQkIwqqIiIiGVFQFRERyYiCqoiISEYUVEVERDKioCoiIpIRBVUREZGMKKiKiIhkREFVREQkIwqqIiIiGVFQFRERyYiCqoiISEYUVEVERDLStb0zICItU1dXx9KlS4tOX7JkSVnjEoMGDaKmRtfbIs2hoCpS4ZYuXcrQoUObNM+uu+5adNqiRYsYMmRIS7Ml0inpclRERCQjCqoiIiIZUVAVERHJiIKqSIUbNGgQixYtqjdcddVVDdLtvffenHnmmey9994Npl111VWb5h00aFBbZFukKqmhkkiFq6mpadCwaM6cOfW+jxw5kgceeAAzw90ZNWoUc+fO3TR97ty5nHnmmW2SX5FqppKqSBVatmxZve9jxozBzAAwMw499NB600t1yRGR8qmkKk1Wql9kU/tEgvpFtoaBAwfW+3733Xdz3nnnbSqpzp49u950VflmS32HOy8FVWmypvaLLNUnEtQvsjWMGzeOW2+9ddP3OXPmMGTIEPr378+KFSsanPDHjh3b1lmsauo73Hnp0kekCh177LEMHjy43rilS5fyyiuvNAioQ4YMYdKkSW2ZPZGqVdFB1cz6mNk5ZvaYma0ys9Vm9rSZXWJmA0rM95KZeYnhyDbcDJHM9e7dm1NOOaWstKeeeiq9evVq5RyJdA4VG1TNbDjwOPADYC+gD9Ab2B24AHjazHYvMN8gYFgbZlWkzdXW1nLttdeWlfaaa65hzZo1rZwjkc6hIu+pmllfYBYwHHgNOB+4H9gMGAlcCmwFzDKzEe6+IjX7fvHzSeDgIqtYnX2uq0fSLzJx4403ctZZZ9VLs/fee3PAAQfw0EMP8dhjj9WbdtVVV3HcccfVW55k66abbmrQ8GXw4MH069ePlStX1pu2ZMkSpk+fzuTJk9s6m1Ur/xjJV1dX16CF9sCBA4s2RtIxUjkqMqgCpxMC6grgQHdfmJr2nJnNBB4Fto5pv5eavn/8vM/dl7dBXqtOfr9I9YnseO6666563xvbJ7NmzVJQzVChvsP5tthiizbKjbSlSq3+PSZ+XpYXUAFw93eBK+LXT+dNToLq31spb52O+kR2PNonIu2jUoPqTvHzbyXSvBo/++aNT6p/f5Jq3PSYmZ1pZt0yzWUnUahPpLsDqE9kO9E+EWkflVr9+znAgP+USLND/HwlGWFmOwDJ2WanVNq94nCMmR3u7u+3NINmNhRoaseyimxApT6RHU+hfdKzZ09qamqoq6tj/fr19dJrn4hkw5Kr12piZl0JAXdn4Eh3vyOOPx74KnAL8BDwJiHIHgVcCPQCbnT3L2aQh4uA77ZkGfPmzWPEiBEtzUqrq62tZdttt230yUkQ+kS+9tpr6sLRyrRPpK3Mnz+f3XbbLT1qN3ef3175aW+VWv3bmB8RAuq/gZmp8be4+2h3/4W7P+nui939eXe/AhgP1AHHmdnH2yHPFUt9Ijue3r17M3r06LLSHnzwwdonIhmpuqBqZmcDZxFaBh/nqaK4u68vNp+73wfcGb8eUyydNKQ+kR3PkiVLuO2228pKe8sttzRo2CQizVNVQdXMvg5cCawDjnL3VxuZJd/98TOLOtdfArs1cTgig/W2uWJ9IrfffvsGj8pL+kRK6zrnnHPIv7XTtWtXBgwYQNeu9ZtSuDtnn312W2ZPpGpVakOlBsxsCvAL4APgeHf/RzMWkxSherc0P+6+CCje+7uApMtDpcnvE7nDDjuwxx57sGzZMgYOHMhTTz3Fiy++uGm6+kS2vnvuuafe9169ejF27FiWL1/O5ptvzl133cXatWs3Tb/33nvbOoudWm1tLTfddBN33XXXpuNk3LhxHHvssfTu3eLTj7SjqgiqZvZl4FrAgRPd/ba86VsQnp603t1vL7Go4fFzcatktErlVx2++OKL9YJoPvWJbH21tbX1vq9Zs4bbby/+r796tR4i1lZmzpzJlClTGtTu3HrrrZxzzjlMnTqVCRMmtFPupKUqvvrXzI4FphG62Jzi7tcXSNYLuBG4zcx2KzAdM+sOfCF+fag18lqt8vtENkZ9IltfU0s7ffr0aaWcSNrMmTM56qijirbKXrJkCUcddRR33nlnwenS8VV0UDWzo4DrgS7AGe4+tVA6d19AeNYvwJVmVmi7fwJsA7wP6KZfE3z60/kPrco2vTTdIYcc0qrppelqa2uZMmUKdXV1JdPV1dVx0kknqUFfharYoGpmhxGCX1fgYuAGM9u8yFBDeHMNwKHA3WZ2kJltaWafNLPbCc8IBvgvd3+vzTdIJEP77LNPq6aXplODvs6hIoOqmX0OuA3oHkd9F3ivxLCNu/8FOI9w3/UzhJa+bwMPEx7+AHCxu/+6bbaietx3332tml6aLv8lB1mnl6bLb9AHIXi+8sorBauDZ82a1RbZkoxVXFA1s4OBGUCPps7r7t8nNFiaCSwFNhCeqjQd+KS7X5RZRjuRpvZxVEOl1qd90vFon3QOFdf6N3aVaXabc3d/AHgguxxJ//79m5R+8803b52MyCb5jceGDh1K9+7dWb16NX369GH9+vX13vepxmOtT8dJ51BxJVXpeAod/P369eMzn/kM/fr1azCtqScXabpx48bV+75o0SK22247vvOd77Dddts1eIG2Hqjf+nScdA4VV1KVjue99xq261q5ciV/+1vhN/OtWLGitbPU6R177LGcc8459e7VzZ07t96LyRNDhgxh0qRJbZm9TknHSeegkqq02MqVK5uUfvny5a2TEdmkd+/eTJ06lZqa0od4TU0NU6dO1QP124COk85BQVVaTA9/6JgmTJjAjBkzGnTXSAwZMoQZM2Ywfvz4Ns5Z56TjpHNQ9a+0WP4LsSH0v+vXrx8rV65s0F1A9+/azvjx43n99deZPn06s2bNYunSpQwaNIixY8cyadIklVDbkI6TzqEqX1JeqcxsBDAv+a6XlItUj2o9TvSS8vpU/Sstpvt3Io3TcdI5KKhKJnT/TqRxOk6qn4KqZGb8+PE899xzTJ48ma222ooBAwaw1VZbMXnyZJ599lmdKETQcVLtFFQlMzNnzmTnnXdm2rRpLFy4kPfee4+FCxcybdo0dt55Z2bOnNneWRRpdzpOqpuCqmRC74kUaZyOk+qnoCotpvdEijROx0nnoKAqLab3RIo0rtBxMnLkSC677DJGjhxZb7yOk8qloCotpvdEijQu/zgZOXIkDzzwAOeffz4PPPAABx54YL3pOk4qk4KqtJjeEynSuPzjZMyYMZgZAGbGoYceWm+6jpPKpKAqLab3RIo0Lv/Zv3fffTfJE+3cndmzZ9ebrmf/ViYFVWkxvSeyY6utrWXatGlMnDiRT3/600ycOJFp06ZRW1vb3lnrVPLfcTtnzhxGjRrF5ZdfzqhRoxq8lk/P/q1Q7q6hgwzACMCTYd68eV4JjjzySE/nu7Hh6KOPbu8sdxp33HGHDx48uOB+GDx4sN9xxx3tncVOY/Xq1UX3Rf4wZMgQr62tbe8sl2XevHn5+R/hHeB82l6DSqrSYnpPZMekPpEdi5792zkoqEqL6T2RHY/6RHZMevZv9VNQlRbLv1cExfupgu4VtQX1iey4knfc/u53v2PixIkccsghTJw4kd/97ne89tprCqgVTu9T7UD0PlXJysSJE+u9EDvpE2lmuHuDhjETJ07k5ptvbo+sSoXT+1TrU0lVWkz3ijoe9YkUaR8KqpIJ3SvqWNQnUqR9dG3vDEj1SO4VTZ8+nVmzZrF06VIGDRrE2LFjmTRpkkqobWjcuHH1qn+TPpGHHnoos2fPVp/IdlZbW8tNN93EXXfdxbJlyxg4cCDjxo3j2GOPpXfv3u2dPWkB3VPtQCr1nqp0PLrP3XHNnDmTKVOmFNw3gwcPZurUqUyYMKEdctY8uqdan6p/RaqQ7nN3TOo7XP0UVEWqlO5zdyzqO9w56J6qSBXTfe6Oo1jf4TFjxnD33XczZ86cTeOTvsOTJ09u62xKCymoilS5Xr16MXnyZJ2g21mx96maGeedd16DvsOzZs3SPqtAqv4VEWkD6jvcOSioioi0AfUd7hwUVEVE2oDep9o5qJ9qB6J+qiLVq1r7Dqufan0qqYqItAH1He4cFFRFRNqI+g5XP3WpERFpQ+o7XN0UVEVE2pj6DlcvVf+KiIhkREFVREQkIwqqIiIiGVFQFRERyYiCqoiISEYUVEVERDKioCoiIpIR9VMVEWljtbW13HTTTdx1110sW7aMgQMHMm7cOI499lh69+7d3tmTFlBQFRFpQzNnzmTKlCkNHqx/6623cs455zB16lQmTJjQTrmTllL1r4hIG5k5cyZHHXVU0TfVLFmyhKOOOoo777yzjXMmWVFQFRFpA7W1tUyZMoW6urqS6erq6jjppJNYs2ZNG+VMsqSgKiLSBm666aYGJdSRI0dy2WWXMXLkyHrjlyxZwvTp09sye5IRBVURkTZw11131fs+cuRIHnjgAc4//3weeOABDjzwwHrTZ82a1ZbZk4woqIqItIFly5bV+z5mzBjMDAAz49BDD603fenSpW2WN8mOgqqISBsYOHBgve9333037g6AuzN79ux60wcNGtRmeZPsqEuNZEr970QKGzduHLfeeuum73PmzGHUqFEceuihzJ49m7lz59ZLP3bs2LbOomTAkislaX9mNgKYl3yfN28eI0aMaMccNU2x/ncAgwcPVv876dRqa2vZdttti3anSRsyZAivvfYavXr1aoOctcz8+fPZbbfd0qN2c/f57ZWf9qbqX8mE+t+JlNa7d2+mTp1KTU3p025NTQ1Tp06tiIAqDSmoSoup/51IeSZMmMCMGTMYPHhwwelDhgxhxowZjB8/vo1zJlnRPVVpsWL978aMGcPdd9/NnDlzNo1P+t9Nnjy5rbMp0iGMHz+e119/nenTpzNr1iyWLl3KoEGDGDt2LJMmTVIJtcIpqEqLFet/Z2acd955jBo1ql4jjFmzZimoSqfWq1cvJk+erOOgCqn6V1pM/e9ERAIFVWkx9b8TEQkUVKXFxo0bV+970v/u8ssvb1D1C+p/JyLVS/1UO5BK7adarf3vRKRx6qdan0qq0mLqfyciEiioSibU/05ERF1qJEPqfycinZ2CqmRK/e9EpDNT9a+IiEhGFFRFREQyoqAqIiKSEQVVERGRjCioioiIZERBVUREJCMKqiIiIhlRUBUREcmIgqqIiEhGFFRFREQyoqAqIiKSEQVVERGRjCioioiIZERBVUREJCMKqiIiIhlRUBUREcmIgqqIiEhGOmVQNbPNzex7ZvaMma02s6Vmdr+Zfbm98yYiIpWra3tnoK2Z2Q7AP4CPpEb3Bg4CDjKzY4CJ7r6hPfInIiKVq1OVVM2sO/AXQkB9Czge2ArYETgfWAccAVzVXnmsdLW1tUybNo2JEyfy6U9/mokTJzJt2jRqa2vbO2siIq3O3L2989BmzOx04OfAcmAvd381b/o4QtD1OP2pNs7fCGBe8n3evHmMGDGiLbPQIjNnzmTKlCksWbKkwbTBgwczdepUJkyY0A45E5HWMn/+fHbbbbf0qN3cfX575ae9daqSKvCl+HllfkAFcPe7gFsJv8vJbZmxSjdz5kyOOuqoggEVYMmSJRx11FHceeedbZwzEZG202mCqpn1AfaPX28okfR38fOw1s1R9aitrWXKlCnU1dWVTFdXV8dJJ53EmjVr2ihnIiJtqzM1VNoVMOAdd19QIt3c+LmdmfVz95XNWZmZDQWGNHG2Yc1ZV3u76aabGpRQR44cyZgxY7j77ruZM2fOpvFLlixh+vTpTJ48ua2zKSLS6jpTUP1Q/GxQ7Zvm7qvM7F1gC0Ijpmeaub7TgO82c96Kctddd9X7PnLkSB544AHMjPPOO49Ro0Yxd+7cTdNnzZqloCoiVanTVP8CfePn+2WkXRE/+7VSXqrKsmXL6n0fM2YMZgaAmXHooYfWm7506dI2y5uISFvqTEHV4mc5zZ0t71NKGDhwYL3vd999N0mrcndn9uzZ9aYPGjSozfImItKWOlP176r42bdkqiApoTbrfmr0S+CWJs4zDLijBetsF+PGjePWW2/d9H3OnDmMGjWKQw89lNmzZ9er+gUYO3ZsW2dRRKRNdJp+qma2L/AI8Ia7b1MiXV9yVcQD3H15G2QvWXdF9lOtra1l2223LdqdJm3IkCG89tpr9OrVqw1yJiKtTf1U6+tM1b/PEKp+tzKzLUqkOyB+vtaWAbWS9e7dm6lTp1JTU/rfqaamhqlTpyqgikjV6jRB1d1XA/8m3Cf9fImkJ8TPv7Z6pqrIhAkTmDFjBoMHDy44fciQIcyYMYPx48e3cc5ERNpOZ7qnCnA98AngPDO72d0Xpyea2SHAsYQS7dR2yF9FGz9+PK+//jrTp09n1qxZLF26lEGDBjF27FgmTZqkEqqIVL1Oc08VNj1Q/z+EB+i/CJwL/AvoBRwFXEx4Y82v3f1r7ZC/irynKiKdl+6p1tepSqruvt7MxhNe/bYDcFuBZDOAb7RlvkREpDp0mnuqCXd/AdgN+CHwArAWeA+4H/iSux+ld6mKiEhzdKqSasLd3wP+Ow4iIiKZ6HQlVRERkdaioCoiIpIRBVUREZGMKKiKiIhkREFVREQkIwqqIiIiGVFQFRERyYiCqoiISEY65cMfOrDu6S8vvfRSe+VDRKQsBc5T3Qul6yw61QP1OzozmwDc0d75EBFpgSPcfWZ7Z6K9qPpXREQkIwqqIiIiGVH1bwdiZv2Bg1Kj3gDWt1N2WmIY9auxjwBebqe8SKB90vFUyz7pDmyd+v6Au69or8y0NzVU6kDiP2LF34sws/xRL3fmlxZ3BNonHU+V7ZMn2jsDHYWqf0VERDKioCoiIpIRBVUREZGMKKiKiIhkREFVREQkIwqqIiIiGVFQFRERyYiCqoiISEYUVEVERDKioCoiIpIRBVUREZGM6Nm/0hoWAxfnfZf2pX3S8WifVCG9pUZERCQjqv4VERHJiIKqiIhIRhRURUREMqKgKiIikhEFVRERkYwoqIqIiGREQVVERCQjCqoiIiIZUVAVERHJiIKqiIhIRhRURUREMqKgKiIikhEFVRERkYzo1W/SbGbWy93XZLSsEcAngNXAc+7+ZBxfA3Rz93VZrCcu07xKXs9kZn2APYC1wEJ3X5ThsrVPmsDMBgCD3P2lVlyH9kkHp5JqhTGzZ+IwoUSae83sD2b2zXiwlbNcM7PPptPHcX8ws+fN7NC89DXA42Z2uZkNbPYG5QwDfgvcCPSP6/g88Azwv2VuwzfN7AozG2lmXUokHWRma8zsTTPbpbkZNrNdzewSM7PUuJpG1p2/jAZpzWwLM/u+mU0rYxGbAQ8BjwHblLveMlXEPkn//i1VzrLM7Hgzm2Rm/fMmHQq8YGb/Z2bnZZWnPBWxTzo1d9fQgQfgc8CfgBPi92cBJ5xMuwFPEQ6y3eL0rsD6mOacMtfRB5gf5/ly3rTH4/gf5Y0/Lo534OoMtvOA1PI+FMedGL/XAfuWsYxHY/rHgH5x3BbAdkDfVLqauMyFefN3BwYD25exrkHAiri+01LjPxPHrQGWAouAd4F34rAIWAK8D2wEziiw7P2BD+JyxjSSjy7J79YK/3sVsU+At4DlwNvAq8CLwPPxWJkPzMsb5sdpzwMvAa/FfbMKuKWMbfpX3KYXkm2K46+L418H9sx6f1TSPunMQ7tnQEMjOwi+FA+AGfF7ckD0BcbHv+9Mpd8hjlsHDGjCev4U53sZ6Joaf00c/6/UuK7xhORxPstgO5N8O6EKLRn/JCHAlLxAALaMJwBPn1iAi1LLrSNUk65MfV9JCIB1qXTPlZnnr8b0q4Fd47jP5K1vfZy+Km9IgubkIsv+WZz+PKFaLxn/07hPfgJcEYeNMe0PgB8BVxEutG4GPlLt+4QQED2j4dZGtmlIat8dnBq/WdyvDhzSiueDitgnnXnQPdWO7w3gPcIBQ+oT4FuEE+o3U+NGxs/73P29/IWZWVd331hgPVcAXwS2B44Ebo3jHyHcs/t7Ku3XgB2BJ4ApHo/KYsxsM0JpeCWwpkj6d1N/p6usTyOU7F6J1cxd3H1xgfknAEa4+Hg0b9q6uIwVhBPfWuBAQsB7jFDi7wH0JJwcV5fanoS7/8bMvhKXdSbhd5lDKMW+7+4bzGwrd1+YP6+Z3Q8cRDg5FXIJcDLhdz4V+HkcPxbYKf79AeEkl1ThfZuG7SQuLLTwKt0nB7v7/WWka8DMzgW+X0bS4wi/xYPu/o/U+K8Sfs/73P3vhWaMVcs9gc0JF65v5E2vxn3S+bR3VNdQfCBUyQwgVRIkV/XUN34fTLi3MjR+vzVOXwEsSA0LCVWODaobU8s+E/h4I3nakhDkVwDDytyOY6hfGlgb87KcUEW6BFicmp6MW0Y4waxPTft5kXXcQwgwe8TvXeNnF2Ag8CGgZyr9WmBB6nuPuG1Dm7iPdgM+F//eH9g/b/ojhCr6U6lf4rw/bs+JJZb9PeA7efn+EKGWoiY1bhWx+pdwwuwZ/y+2A7pX+z4hV1IdHb/3K5W+yDLOpbyS6hMx3di8fL6e93s2NjT4zappn3TmQSXVjm0qcBiAmW0gHAzd47RlZtaVcBIF+KuZHUOu+vHZOL4X8DFCEHybcJAQl/kIsDVQC2wglHxOaaStxgDClfYK4I7Y0KEr4Qp7obvvV2CepEXiBsIJoJiN5EpadaltK8nMtgIOAWa6+1Nx9Fwzu5NQwjsJuDKmTapkewDbmNkawm+aXPX/mlDiLLauzWIel3swD5hnZp8kNBh63sz2dPd1ZjYc2JewP0bQxIaB7r6psUvc11sSTrCrPZ7hCszjwFozW0cItv3MbIO7r8hLWjX7pIBrzOww4D/AKHevK2OevxGOjRdLbNO+wJ4A7j4rNekbhONoGeEYGkLYT+/WXwJGOB43L7KKat4nnYaCasc2ixAcawlXkWeQO6AuJRxQXYHehCvlLxJKrX93908DmNn+hNLtX939+Lzl9yacqJujfxzSip0IkpPFw+4+utgCU1Wih7v7P/OmdQP6FZn1PMKV9mUx7ecIpcZ9gP8jnOAeJ5RolhOqrU4i/K5/Ipws+hCqbRcUy180EvgrUGdmO7r7ywDu/s+Y/4Pjsn8F/Hec51R3/00jy022cWMSMOMFS427bwC2IjTCSdImF1kQTnyY2VrCCbYr9QP4ZwlBI62a9sm4mP6Z+L025mtWmQEV4Al3/79G0pyTP8LMtgDOT+VjJCEw/cndzyi2IDPrXmB0Ne2TTktBtQNz918AmFlf4F5CVWJXYC/CleIFwD/d/YaY7ok4689SixkcPwvdX0k0+15UXO9o4B8lkhS6h1vIq4STxdDUsj9EqDZ9nVDdlb/urwFfJ5yQfm1mHyWUpiFUn75BaMRxnbuvT833FWCZu389b3m9zGxLQrXp6wXyuCp+LkwCaixFfgCcBXzM3f9kZvsQTkjXJAG1xP3sxKXAf8VSJoRq3NHAg4Tf8CXCyW4FudbDGwklm/zg0Q84ilAt+GCBdVXNPnH3x/NG9Yifp5jZxDK2sQ/wAOEedkFmth+hejbfzwglz5vd/d9mNrJAmgbS251SNfukM1NQ7eDM7CPAHYR7d58CfhcnbQF8GjjdzDYH3iRUTT0e0yeGxM8GjWXaULkni6TT/LapcUcDPzWzvwLnufuzefM8n/q7jtB6eR/C7/BDQvABNlVprYv5Saq1VpAr3fUgV8L7K3B4gTxuiJ/p6tcLCRc4Gwgl2KnkSosnmdnk+P024NgS2w+5qrye8e83ADw0dtohbscIQsC+JKnWjSfJ9wgNXNaZ2VcJQfXuFp7AK2Gf5OsTPz8Sh2JqyP3eDxVLZKFP9tWptMn4E4CJhGrjc8vIV2OqeZ90GgqqHZSZ9QYmA5cTSh1T3P1xC09tgXAgHwTMBU4hBE8HbgeuNbML3f1tQutRKFxd8w7hKnudmW1NOLG8H5eddNNokDXC/003wslrX0JjiTsI/f1K2dHMriEckF3iMnoBH7j7JEK/P1J5htAvr1vcvvSJIfEgoUXsPwj3gP6PENxOjNuwlhBsVhG6BKwj1yWiLualhlC1lVRv9SUXPPMV+k2SkuV9hD6Q+QbF/DT2tJtLgf9x941mtoBw0qxNJ4gtSK8m3Bs7zsxOdPd7CFWfPQlB+2bgy3GWOxtZZzXsk3zJbYkD3f1fpRKmWuT2KJHsG4Rq0vmEe+NJ7UTSsOgyd3+1+Oz11pc0MltZIlk17pPOo71bSmkoPBCa7i8n/LOfEMcNJwTZM4AhcdzWwBjCgXAV4b6JE6ohIZSOHNi9kfVtR65/6xoa9qvM71+ZDIPL2JaD8ubJH+bHdLvG7w+m5l0Qxx1RxnqmxLQX5o3vQarlbYn5ewB9GknzibiOBalxScvRE4vMs1uc/vvUuPsbmSfZ7ga/L+HkeWWc/ijhxFsbv28e0+wS/08GVvs+KTBP8sCSXTM4DncnHINOuGfqxPZgcfonqd+v++yYJglU6SG5UC3YAr+a90lnGto9AxpK7BzYG9g79f3GeDDcTV5XCUJjlB6ErhtOrpvHQkKgLNi1Im8ZNSWm9SL040uC6uuEx6L1KmO5Y+I8M/PG7xTH/yt+T4LDakJpePc4fVFjBzuhOnwJoftKt7xpY+NyaqnfPWFJ/DvdHeG/GllPoaCaXMicWGSeJKj+ITXu/kbmSU6Sg1PjjPDgh6Pj90mELhBGKE0sb8L/VtXskwLrfTXOt1UT5ulH6mEKqfH9CW0Z/hK3v15QLZA+CarLCdW06WEh4X746Z1tn3SmQdW/HdtngAGxe8A6whOUAJ4GzoqtQ7sQqq8+cPd7zSy5lzLczF4l3FN61AvfV6vHC7SUjK0UJxNaOCbdBi4CfuWlG92kJfe48h++3zd+rozr/yB28zmIUAI4Ok7/k4cWsAXFqvKbCFXZY4CeZvYxwnNSbyGcICAEnneKLGYIoYX1e2VtUX3JwxemWenn9bb0eJtIuGg6Nd63PcPd18YqRSM8rq9c1bxPkmdRP2VmXiKdEaoyexOqNn9A3r1Rd19h4dm6hVrrlnK9F2n9a8X7rFXzPuk0FFQ7tomE0mraBsI9niSgJgfoa4Rg9yShNHkguab1+d0pmuJThNIRhAPvDG/6m1AGxc/8+0ibFRh/F+Fk8TXgCMJV8W+LLTgG/f8QngRVS7i3mzROedXdb47dTwDmuvuhcb6tgbfc/YP4/UeEBy2Ue6GQ9gTh8YCfIPzuNxO6Qp1CKEleQjjWWvT2krgt64DfE56M8z3gFXLdot4oMmshVblP4oXmBkJJP6ly3Uju8XqFbE9oCVvwwtNj69Z4H7XFPBYLC6jKfdLZKKh2bOMJVTxrCNWFHwO2dfdlUO/RalMIBxnuvtLM/hXn3Tcu5+ZCCzezPQglzxWEVqOlGh2sc/cv5M1vhCrnXoQA3t/dny4w79bxc0ne+ORk8X5q3M2EYPHF+P0Wdy/U+AcIXRPMbBnhZLGOUAX2NOFBF4XykngV6GJmh7v7X0uka5S7/wX4i5ldTQiqV7n7w2Z2OOGh599tyfIBYgvvHoSuVZ8Cerv7K3HyDvHzlZg2aUzWk1D6WZ/8z6RU5T6JJ//BjSZMMbObCRewmbzGsAWqcp90NgqqHZiH1rvJk1w+RXgbTPrk+EXCieBWr9+a8HpCa8DhwAMe37lYwL9JtXqMTenT/R6Th0sA9IjN6pMnKHUlV+2ZWErhE1rSSjG/JJV099mUd3dfYOEJL0cSLijOLpL3tFOBN909/wk2ifyuEP0JeV8LzM5L26SnHuXZOX6+2oJlNGDhSTiTiE+7iT6I+ytpmQnw1diVJn+/XEyoxUirmn1i4QEMawjPWy5V3VtMUr26OpZ0B3rh5+a2SCzp9iXUXrxY4PZJ1eyTzkxBtTJcHD+/bmaHEKp4FxMaKPzaGzbPvwP4BeEf/w7K4+T6pqWDah25ez3rCf8zyaPRyn1vaFJiftbMPkFoRVlLKGFD6DMHgJltQ+i+AKWr7HIZb9j5P1lWX8IJp1fepG2T/CTVWil9aYbYEX408HJyMVQgzVeB/3gj3TzybE8olVxCeK7zasJJbgO57gynE36npJq+G7mHn/eicLVzNe2TPxAb+Vh4nF7SWrdcyW2SKwmN7xbR/CeNJU43s9NLTB9CwxJpNe2TTktBtTJ8hdA/7mOEEuh4cn3xDjazbwK/dfdVZjYYmEnuSvJ78T7cNQUaIo0gVCmtoshbMSz3tKR17j6kwPSehIOxD6HBR/703QmBYQ2h+0cd4fGLm8ckrxLu1SYninsIV/IrCSe7XxNOLpjZpwitje9LLX9QXPcQwj2inQhdDvYBtnD3oRbe2rGO3D2zUfHzX6l+io8RHsX2Zv42lOkcQiC7scBvsAWhFH8G8LH4mzYm2X9/Ipzc3nH3Bk8HMrMzCI1o7nD3Myw8LOTtQo3OUvNU2z7ZSGhYk7xdpZbcfdRyjI6fyZOBijUkKtWXNV8t9atrIfx/9CZsWz1VuE86r/Zufqyh/IFQPfQLwgljDeEgW0cotW5HCLZvE65a7yP3Tk4HniOUaBrtV5q3ztFx/rXNzPPv4/y3pMb9HLiW0GqxRxw3ktB61Qknk20JV/IOfDumOStu93mpZSXdWQoNTxTIz2ByXS4OJNfY57Nlbk+9LjWEk+QP47j3Sb2/lHAxknRRSN6kspJwlX8/RbrUEGoAkndzOvDLAmks/h4bCSfBPQmlq4WEhxQc1ln2SQuPqX7kSnp7NZI2ecCKl0iTdKkp+JaY1Dpr8sZpn1TJ0O4Z0FBkx4ST5LcID7++idxLwZ3Qim+/mG5XwsPb/5ma/hvi65uA/0eu07kDFzQxH4fQzKAKfJxcv7bDi6QZRKhyS/q/3p46gXw25v0DwkMv5sU0U1Pz7x3HvQ1cR3i+6b7AZgXWtTehUYYTSpS9CBcfyW8ztdB8ecv4ZEy7gPDs1efi9w+AiXlpj47pPiBU1b4AHBOnzY3znVBgHUen8vQIqT7GhFLpMYT74cl6T4jTdiQ8QSmZdxawfbXvkxYeZ1NS6xrQSNrtkrQl0iTB69ed+TjpzEO7Z0BDkR0T/pEfTP0jryXcH51I/Xdp/jGV5qVCByUhEDxLCMZWxrqHErqDnEx40IQTGoE0dRtuiPM+XmT6loRGGUn+f0DDK/gTaPgUpwNT03sQqqkKbhehiuw4QoBJljOdGKgIJb5TCSXI5Dfcv8Q2jaZ+SXVY/F0nlPmb/IHQBSfJy/F507sTukc5ocp4G0IV4LfiiXR56nd4g/iQj7xlfI7c+z3XEF6YULX7pIn/k8MJLxT/f4R71Ukw+2cZ8+6VbG+JNBfFNNM683HSmYd2z4CGEjsnNLH/PuFeSd8iabrGf/4plHiaSjxZ71HmeruQe6JPMvyjmdswmvjy6BLTF1Hi8WrA51MH85wmrHs8Iagk2/AKeUEslXZEapvnFfst4zI3BdU4rtELlVTaL+T9rgcUSPMxQoliQmrcVal5Xib0FSz6NKt4In6UcA8s/+lbVbVPmvj/+GHCLZP0PngPGFnGvIfSeFBNHh95WxPz1Wn3SbUN7Z4BDR1zIFQpLyM8OOJsoF8rrqvR54gSLjDOIjSqaMqyzyDcez4a6NJI2i1i2q1LpDkpP6g2MT9bEl5ccB1wXKm85H3vSihdfYoygzjhfm/RbamWfdKMbZtJaEF/PaH0VbLat4nL/l38/3ggq2V2hn1STYPFH0mkHjPr6e5r2zsfIiKVREFVREQkI3oqhoiISEYUVEVERDKioCoiIpIRBVUREZGMKKiKiIhkREFVREQkIwqqIiIiGVFQFRERyYiCqoiISEYUVEVERDKioCoiIpIRBVUREZGMKKiKiIhkREFVREQkIwqqIiIiGVFQFRERyYiCqoiISEYUVEVERDKioCoiIpIRBVUREZGMKKiKiIhkREFVREQkIwqqIiIiGVFQFRERyYiCqoiISEYUVEVERDKioCoiIpKR/w8pOvcflHbQ7wAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"labels = ['数学成绩','阅读成绩','写作成绩']\n",
"plt.figure(figsize=(1.3,2), dpi=300)\n",
"plt.boxplot(grade_single, notch=True, labels=labels, meanline=True,flierprops=dict(markersize=2), widths=0.3)\n",
"plt.title('学生各项考试成绩分散情况箱线图', fontsize=6)\n",
"plt.xticks(fontsize=6)\n",
"plt.yticks(fontsize=6)\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"id": "9952d9ec11b1ea44",
"metadata": {},
"source": [
"## 🎯 结论总结\n",
"\n",
"### ✅ 总成绩分布结论:\n",
"\n",
"- 超八成学生在“及格”及以上,说明整体成绩水平较好。\n",
"- 有约 1/10 学生不及格,需要给予更多辅导或支持。\n",
"- “良好”最多,占近一半,说明多数学生在中上水平,具备进一步提高的潜力。\n",
"\n",
"---\n",
"\n",
"### ✅ 单科成绩分散结论:\n",
"\n",
"- 三科成绩的中位数都偏高,说明大多数学生得分在及格线以上。\n",
"- 数学和写作的离散程度大于阅读,说明这两科差异性更大,存在部分成绩特别高或特别低的学生。\n",
"- 数学异常值最多,可能是该科学生差距最大的体现,建议个别关注。\n",
"\n",
"---\n",
"\n",
"### 🧠 综合建议:\n",
"\n",
"- **提升良好 → 优秀**:大量学生处在“良好”区间,有提升空间,可通过强化训练或拓展课程提升至优秀。\n",
"- **关注不及格学生**:需个性化辅导,查漏补缺。\n",
"- **关注数学两极分化**:制定针对性提升方案,帮助数学成绩波动大的学生。"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.12"
}
},
"nbformat": 4,
"nbformat_minor": 5
}