{ "cells": [ { "metadata": { "ExecuteTime": { "end_time": "2025-04-02T07:57:56.382179Z", "start_time": "2025-04-02T07:57:55.984261Z" } }, "cell_type": "code", "source": "import pandas as pd", "id": "3244cf38b10be81b", "outputs": [], "execution_count": 1 }, { "metadata": { "ExecuteTime": { "end_time": "2025-04-02T08:00:15.267189Z", "start_time": "2025-04-02T08:00:15.229542Z" } }, "cell_type": "code", "source": [ "data = pd.read_csv('data/某地区房屋销售数据 (1).csv', encoding='gbk')\n", "data['new_postcode'] = data['地区邮编'].apply(lambda x: str(x)[:2])\n", "data.head(3)" ], "id": "d973cf9fe6ac90a6", "outputs": [ { "data": { "text/plain": [ " 房屋出售时间 地区邮编 房屋价格 房屋类型 配套房间数 new_postcode\n", "0 2010/1/4 0:00 2615 435000 house 3 26\n", "1 2010/1/5 0:00 2904 712000 house 4 29\n", "2 2010/1/6 0:00 2617 435000 house 4 26" ], "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
房屋出售时间地区邮编房屋价格房屋类型配套房间数new_postcode
02010/1/4 0:002615435000house326
12010/1/5 0:002904712000house429
22010/1/6 0:002617435000house426
\n", "
" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "execution_count": 4 }, { "metadata": { "ExecuteTime": { "end_time": "2025-04-02T08:00:25.320359Z", "start_time": "2025-04-02T08:00:25.301349Z" } }, "cell_type": "code", "source": [ "# 1、求出不同地区和不同房间数的房价,使用pivot_table函数\n", "data.pivot_table(values='房屋价格', index='new_postcode', columns='配套房间数', aggfunc='mean')" ], "id": "c9d4b29b2fbd4334", "outputs": [ { "data": { "text/plain": [ "配套房间数 0 1 2 3 \\\n", "new_postcode \n", "26 564125.0 343189.962401 457595.588277 624204.46900 \n", "29 528000.0 292934.514286 381675.627240 475210.25609 \n", "\n", "配套房间数 4 5 \n", "new_postcode \n", "26 810389.319007 1.037034e+06 \n", "29 651102.874716 7.995584e+05 " ], "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
配套房间数012345
new_postcode
26564125.0343189.962401457595.588277624204.46900810389.3190071.037034e+06
29528000.0292934.514286381675.627240475210.25609651102.8747167.995584e+05
\n", "
" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "execution_count": 5 }, { "metadata": { "ExecuteTime": { "end_time": "2025-04-02T08:04:02.430064Z", "start_time": "2025-04-02T08:04:02.415284Z" } }, "cell_type": "code", "source": [ "# 2、不同地区哪种类型的房产房价最贵,使用pivot_table函数\n", "data.pivot_table(values='房屋价格', index='new_postcode', columns='房屋类型', aggfunc='max')" ], "id": "a5e4f3321d168313", "outputs": [ { "data": { "text/plain": [ "房屋类型 house unit\n", "new_postcode \n", "26 8000000 2500000\n", "29 5425000 769500" ], "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
房屋类型houseunit
new_postcode
2680000002500000
295425000769500
\n", "
" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "execution_count": 7 }, { "metadata": { "ExecuteTime": { "end_time": "2025-04-02T08:04:41.035870Z", "start_time": "2025-04-02T08:04:41.012959Z" } }, "cell_type": "code", "source": [ "# 3、不同类型房产和不同房间数的房价之间的比较,使用pivot_table函数\n", "data.pivot_table(values='房屋价格', index='房屋类型', columns='配套房间数', aggfunc='mean')" ], "id": "4ed9b36daea1c503", "outputs": [ { "data": { "text/plain": [ "配套房间数 0 1 2 3 \\\n", "房屋类型 \n", "house 677394.736842 353634.269663 489555.889339 560117.683516 \n", "unit 330850.000000 336570.325391 432502.153116 594535.982287 \n", "\n", "配套房间数 4 5 \n", "房屋类型 \n", "house 730667.024375 9.290297e+05 \n", "unit 641736.842105 1.146333e+06 " ], "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
配套房间数012345
房屋类型
house677394.736842353634.269663489555.889339560117.683516730667.0243759.290297e+05
unit330850.000000336570.325391432502.153116594535.982287641736.8421051.146333e+06
\n", "
" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "execution_count": 8 }, { "metadata": { "ExecuteTime": { "end_time": "2025-04-02T08:05:23.703349Z", "start_time": "2025-04-02T08:05:23.691916Z" } }, "cell_type": "code", "source": [ "# 4、不同地区不同房间数房屋销售情况交叉表,使用crosstab函数,参考例3-61\n", "pd.crosstab(data['new_postcode'], data['配套房间数'])" ], "id": "799d99489d93b2b5", "outputs": [ { "data": { "text/plain": [ "配套房间数 0 1 2 3 4 5\n", "new_postcode \n", "26 24 1383 2815 6371 4793 1007\n", "29 5 175 558 4557 4845 835" ], "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
配套房间数012345
new_postcode
262413832815637147931007
29517555845574845835
\n", "
" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "execution_count": 10 } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.6" } }, "nbformat": 4, "nbformat_minor": 5 }