feat(商务大数据分析): 五一前作业更新
- 新增 aqi.csv 文件,包含 2020 年 1 月 1 日至 9 月 27 日的空气质量数据- 数据包括日期、AQI、质量等级以及 PM2.5、PM10、SO2、CO、NO2、O3等污染物含量
This commit is contained in:
parent
4ba4da7d3a
commit
b4ef64314b
22
task2.py
Normal file
22
task2.py
Normal file
@ -0,0 +1,22 @@
|
||||
import time
|
||||
from flask import Flask
|
||||
import redis
|
||||
|
||||
app = Flask(__name__)
|
||||
cache = redis.Redis(host='redis', port=6379)
|
||||
|
||||
def get_hit_count():
|
||||
retries = 5
|
||||
while True:
|
||||
try:
|
||||
return cache.incr('hits')
|
||||
except redis.exceptions.ConnectionError as exc:
|
||||
if retries == 0:
|
||||
raise exc
|
||||
retries -= 1
|
||||
time.sleep(0.5)
|
||||
|
||||
@app.route('/')
|
||||
def hello():
|
||||
count = get_hit_count()
|
||||
return 'Hello World! I have been seen {} times.\n'.format(count)
|
BIN
商务大数据分析/20250430/data/2001-2019年劳动力与就业人员数据.npz
Executable file
BIN
商务大数据分析/20250430/data/2001-2019年劳动力与就业人员数据.npz
Executable file
Binary file not shown.
272
商务大数据分析/20250430/data/aqi.csv
Executable file
272
商务大数据分析/20250430/data/aqi.csv
Executable file
@ -0,0 +1,272 @@
|
||||
日期,AQI,质量等级,PM2.5含量(ppm),PM10含量(ppm),SO2含量(ppm),CO含量(ppm),NO2含量(ppm),O3_8h含量(ppm)
|
||||
2020/1/1,79,良,58,64,8,0.7,57,23
|
||||
2020/1/2,112,轻度污染,84,73,10,1.0,71,7
|
||||
2020/1/3,68,良,49,51,7,0.8,49,3
|
||||
2020/1/4,90,良,67,57,7,1.2,53,18
|
||||
2020/1/5,110,轻度污染,83,65,7,1.0,51,46
|
||||
2020/1/6,65,良,47,58,6,1.0,43,6
|
||||
2020/1/7,50,优,18,19,5,1.5,40,43
|
||||
2020/1/8,69,良,50,49,7,0.9,39,45
|
||||
2020/1/9,69,良,50,40,6,0.9,47,33
|
||||
2020/1/10,57,良,34,28,5,0.8,45,21
|
||||
2020/1/11,47,优,27,21,6,0.7,37,39
|
||||
2020/1/12,125,轻度污染,95,74,8,1.0,44,71
|
||||
2020/1/13,148,轻度污染,113,94,9,1.3,59,53
|
||||
2020/1/14,172,中度污染,130,114,12,1.4,62,65
|
||||
2020/1/15,113,轻度污染,85,62,8,1.2,50,32
|
||||
2020/1/16,55,良,16,14,5,0.8,44,38
|
||||
2020/1/17,82,良,60,43,6,0.9,42,25
|
||||
2020/1/18,88,良,65,55,6,0.8,51,31
|
||||
2020/1/19,112,轻度污染,84,77,10,1.0,53,77
|
||||
2020/1/20,127,轻度污染,96,99,14,1.2,70,90
|
||||
2020/1/21,203,重度污染,153,113,9,1.3,43,60
|
||||
2020/1/22,148,轻度污染,113,77,6,1.2,43,30
|
||||
2020/1/23,58,良,41,37,5,0.6,26,42
|
||||
2020/1/24,79,良,58,57,6,0.7,18,78
|
||||
2020/1/25,40,优,26,40,5,0.5,17,61
|
||||
2020/1/26,29,优,20,17,5,0.5,21,56
|
||||
2020/1/27,70,良,51,41,5,0.8,21,57
|
||||
2020/1/28,95,良,71,65,6,0.7,19,70
|
||||
2020/1/29,84,良,62,60,10,0.7,25,77
|
||||
2020/1/30,128,轻度污染,97,85,9,1.0,26,103
|
||||
2020/1/31,125,轻度污染,95,82,10,1.0,43,94
|
||||
2020/2/1,75,良,55,49,7,0.7,21,102
|
||||
2020/2/2,42,优,28,30,8,0.5,26,84
|
||||
2020/2/3,109,轻度污染,82,68,9,0.9,30,109
|
||||
2020/2/4,92,良,68,60,7,0.8,22,103
|
||||
2020/2/5,65,良,47,44,7,0.8,19,106
|
||||
2020/2/6,38,优,22,25,5,0.6,11,75
|
||||
2020/2/7,33,优,14,16,5,0.6,12,66
|
||||
2020/2/8,62,良,44,40,5,0.6,22,45
|
||||
2020/2/9,53,良,37,34,7,0.6,25,79
|
||||
2020/2/10,48,优,33,36,8,0.7,32,69
|
||||
2020/2/11,35,优,24,26,6,0.7,20,47
|
||||
2020/2/12,43,优,30,34,5,0.9,23,56
|
||||
2020/2/13,22,优,15,18,5,0.8,15,30
|
||||
2020/2/14,23,优,14,17,5,0.8,18,32
|
||||
2020/2/15,27,优,8,10,5,0.7,14,53
|
||||
2020/2/16,42,优,21,31,7,0.5,11,83
|
||||
2020/2/17,45,优,19,33,9,0.5,18,90
|
||||
2020/2/18,49,优,27,32,8,0.6,28,97
|
||||
2020/2/19,55,良,39,37,7,0.6,25,76
|
||||
2020/2/20,64,良,46,43,8,0.7,25,111
|
||||
2020/2/21,62,良,44,41,9,0.6,31,66
|
||||
2020/2/22,83,良,61,89,10,0.9,42,94
|
||||
2020/2/23,92,良,68,107,7,0.8,25,109
|
||||
2020/2/24,85,良,63,87,8,1.0,44,84
|
||||
2020/2/25,95,良,71,79,6,1.2,44,42
|
||||
2020/2/26,50,优,35,43,4,0.7,19,87
|
||||
2020/2/27,70,良,51,68,4,0.8,19,93
|
||||
2020/2/28,38,优,26,25,4,0.7,28,59
|
||||
2020/2/29,40,优,28,21,4,0.8,29,41
|
||||
2020/3/1,50,优,35,29,5,0.7,27,58
|
||||
2020/3/2,54,良,38,37,5,0.8,22,87
|
||||
2020/3/3,72,良,52,49,8,1.0,44,64
|
||||
2020/3/4,85,良,63,58,6,0.9,33,104
|
||||
2020/3/5,56,良,31,41,8,0.7,24,107
|
||||
2020/3/6,64,良,46,43,7,0.6,35,84
|
||||
2020/3/7,67,良,48,53,6,0.9,43,75
|
||||
2020/3/8,68,良,49,52,7,0.8,29,105
|
||||
2020/3/9,37,优,19,25,5,0.7,29,47
|
||||
2020/3/10,62,良,44,38,5,1.0,32,74
|
||||
2020/3/11,67,良,48,68,7,1.0,39,113
|
||||
2020/3/12,68,良,49,68,7,0.8,44,95
|
||||
2020/3/13,67,良,48,70,7,0.9,45,46
|
||||
2020/3/14,52,良,24,53,7,0.5,40,96
|
||||
2020/3/15,77,良,38,86,12,0.8,61,109
|
||||
2020/3/16,70,良,51,80,10,0.7,47,108
|
||||
2020/3/17,74,良,43,77,10,0.7,59,122
|
||||
2020/3/18,70,良,46,79,16,1.1,56,123
|
||||
2020/3/19,77,良,35,104,14,0.9,47,78
|
||||
2020/3/20,68,良,37,86,12,0.7,53,112
|
||||
2020/3/21,67,良,42,67,10,0.9,53,87
|
||||
2020/3/22,55,良,31,60,6,0.8,33,102
|
||||
2020/3/23,42,优,19,41,8,0.5,33,83
|
||||
2020/3/24,65,良,26,43,9,0.5,33,118
|
||||
2020/3/25,63,良,30,48,9,0.8,50,66
|
||||
2020/3/26,57,良,27,35,6,0.9,45,24
|
||||
2020/3/27,34,优,12,27,6,0.6,27,62
|
||||
2020/3/28,39,优,11,24,5,0.4,20,78
|
||||
2020/3/29,35,优,22,27,6,0.7,28,57
|
||||
2020/3/30,38,优,26,24,5,0.7,29,60
|
||||
2020/3/31,48,优,28,34,5,0.7,38,40
|
||||
2020/4/1,45,优,23,28,5,0.7,36,90
|
||||
2020/4/2,54,良,30,57,7,0.7,39,101
|
||||
2020/4/3,67,良,45,63,8,0.8,53,109
|
||||
2020/4/4,93,良,60,87,11,1.1,74,125
|
||||
2020/4/5,56,良,20,61,7,0.6,27,94
|
||||
2020/4/6,65,良,31,50,8,0.6,36,117
|
||||
2020/4/7,55,良,30,50,9,0.6,43,105
|
||||
2020/4/8,62,良,29,55,9,0.5,45,114
|
||||
2020/4/9,85,良,42,68,10,0.6,43,142
|
||||
2020/4/10,70,良,43,65,8,0.7,32,124
|
||||
2020/4/11,37,优,23,25,5,0.7,27,73
|
||||
2020/4/12,70,良,31,52,7,0.6,26,123
|
||||
2020/4/13,85,良,39,69,9,0.6,54,141
|
||||
2020/4/14,81,良,42,64,10,0.7,49,137
|
||||
2020/4/15,75,良,30,64,19,1.1,60,116
|
||||
2020/4/16,75,良,33,71,12,0.8,60,111
|
||||
2020/4/17,79,良,53,94,17,0.9,63,75
|
||||
2020/4/18,66,良,47,82,9,0.8,41,112
|
||||
2020/4/19,51,良,19,24,5,0.6,31,101
|
||||
2020/4/20,65,良,25,37,9,0.8,52,110
|
||||
2020/4/21,45,优,23,40,7,0.5,34,89
|
||||
2020/4/22,63,良,29,45,7,0.4,41,115
|
||||
2020/4/23,70,良,40,68,8,0.5,54,124
|
||||
2020/4/24,85,良,30,69,15,0.7,68,130
|
||||
2020/4/25,73,良,26,70,22,1.0,58,120
|
||||
2020/4/26,77,良,36,76,14,0.8,47,132
|
||||
2020/4/27,51,良,25,49,7,0.6,28,101
|
||||
2020/4/28,81,良,25,45,7,0.5,34,137
|
||||
2020/4/29,112,轻度污染,34,69,11,0.6,43,173
|
||||
2020/4/30,90,良,43,80,12,0.8,55,148
|
||||
2020/5/1,54,良,38,53,8,0.9,34,88
|
||||
2020/5/2,80,良,39,60,13,1.2,35,136
|
||||
2020/5/3,90,良,44,72,22,1.5,52,147
|
||||
2020/5/4,132,轻度污染,43,69,18,1.4,40,195
|
||||
2020/5/5,49,优,34,49,6,1.0,36,46
|
||||
2020/5/6,45,优,29,44,5,0.8,29,89
|
||||
2020/5/7,72,良,28,50,6,0.7,24,126
|
||||
2020/5/8,40,优,24,40,6,0.8,26,44
|
||||
2020/5/9,36,优,25,27,5,0.6,21,72
|
||||
2020/5/10,55,良,27,32,6,0.9,43,105
|
||||
2020/5/11,87,良,23,55,8,0.8,44,144
|
||||
2020/5/12,77,良,15,61,12,0.6,46,132
|
||||
2020/5/13,133,轻度污染,31,79,10,0.6,37,196
|
||||
2020/5/14,58,良,35,52,7,0.8,29,109
|
||||
2020/5/15,44,优,18,26,8,0.9,33,87
|
||||
2020/5/16,52,良,22,35,11,1.0,41,100
|
||||
2020/5/17,83,良,24,45,14,1.2,36,139
|
||||
2020/5/18,60,良,19,64,8,0.7,30,112
|
||||
2020/5/19,92,良,29,70,15,0.9,52,150
|
||||
2020/5/20,127,轻度污染,35,71,13,0.7,35,189
|
||||
2020/5/21,105,轻度污染,23,53,10,0.6,23,165
|
||||
2020/5/22,75,良,16,31,6,0.6,16,130
|
||||
2020/5/23,85,良,21,41,7,0.6,23,142
|
||||
2020/5/24,130,轻度污染,39,70,12,0.9,35,193
|
||||
2020/5/25,57,良,40,57,10,0.9,31,103
|
||||
2020/5/26,75,良,26,35,6,0.9,25,129
|
||||
2020/5/27,109,轻度污染,26,49,9,1.0,34,169
|
||||
2020/5/28,99,良,41,66,14,1.2,44,158
|
||||
2020/5/29,51,良,33,51,10,0.7,34,99
|
||||
2020/5/30,46,优,18,25,5,0.6,18,91
|
||||
2020/5/31,80,良,25,49,9,0.9,33,135
|
||||
2020/6/1,116,轻度污染,34,62,7,0.8,31,177
|
||||
2020/6/2,65,良,23,43,9,0.9,34,117
|
||||
2020/6/3,48,优,14,27,7,0.8,24,95
|
||||
2020/6/4,47,优,12,28,8,0.8,22,94
|
||||
2020/6/5,36,优,10,17,5,0.7,25,71
|
||||
2020/6/6,85,良,15,26,6,0.7,19,142
|
||||
2020/6/7,80,良,16,37,7,0.5,17,135
|
||||
2020/6/8,57,良,28,44,7,0.5,14,108
|
||||
2020/6/9,60,良,18,31,6,0.6,15,112
|
||||
2020/6/10,45,优,22,36,7,0.9,36,82
|
||||
2020/6/11,68,良,33,48,6,1.0,36,121
|
||||
2020/6/12,39,优,9,28,6,0.8,27,77
|
||||
2020/6/13,53,良,11,23,6,0.8,35,103
|
||||
2020/6/14,39,优,12,23,6,0.7,27,78
|
||||
2020/6/15,44,优,7,19,6,0.7,35,46
|
||||
2020/6/16,50,优,20,29,5,0.8,22,99
|
||||
2020/6/17,46,优,17,43,7,0.8,26,91
|
||||
2020/6/18,34,优,16,25,5,0.7,23,67
|
||||
2020/6/19,60,良,13,25,6,0.8,28,111
|
||||
2020/6/20,48,优,13,22,6,0.7,19,95
|
||||
2020/6/21,41,优,5,10,5,0.6,20,82
|
||||
2020/6/22,34,优,8,10,5,0.6,20,67
|
||||
2020/6/23,35,优,9,16,5,0.9,28,40
|
||||
2020/6/24,48,优,18,34,8,0.9,34,96
|
||||
2020/6/25,71,良,26,41,8,1.0,28,125
|
||||
2020/6/26,45,优,13,28,6,0.6,18,89
|
||||
2020/6/27,35,优,12,21,5,0.7,28,63
|
||||
2020/6/28,47,优,11,18,5,0.7,14,93
|
||||
2020/6/29,41,优,8,18,6,0.7,19,81
|
||||
2020/6/30,83,良,16,28,6,0.7,26,139
|
||||
2020/7/1,126,轻度污染,33,55,6,0.7,18,188
|
||||
2020/7/2,47,优,18,35,6,0.6,18,94
|
||||
2020/7/3,46,优,10,21,5,0.6,19,91
|
||||
2020/7/4,60,良,20,34,6,0.7,18,112
|
||||
2020/7/5,35,优,11,21,6,0.7,28,45
|
||||
2020/7/6,35,优,8,13,5,0.7,28,46
|
||||
2020/7/7,55,良,14,25,9,1.1,36,105
|
||||
2020/7/8,80,良,29,43,8,1.3,26,136
|
||||
2020/7/9,50,优,22,39,5,0.8,17,99
|
||||
2020/7/10,70,良,19,31,5,0.6,12,124
|
||||
2020/7/11,30,优,13,23,5,0.7,17,59
|
||||
2020/7/12,42,优,15,41,9,0.8,33,64
|
||||
2020/7/13,29,优,11,15,5,0.6,23,58
|
||||
2020/7/14,46,优,14,25,6,0.7,21,91
|
||||
2020/7/15,46,优,7,13,5,0.7,21,91
|
||||
2020/7/16,39,优,7,12,5,0.6,21,78
|
||||
2020/7/17,32,优,15,24,6,0.6,22,63
|
||||
2020/7/18,49,优,18,32,6,0.8,39,20
|
||||
2020/7/19,37,优,13,19,6,1.0,29,67
|
||||
2020/7/20,49,优,21,30,7,0.7,25,98
|
||||
2020/7/21,48,优,20,32,6,0.7,26,96
|
||||
2020/7/22,55,良,14,37,6,0.6,21,105
|
||||
2020/7/23,38,优,10,27,7,0.6,22,76
|
||||
2020/7/24,44,优,12,19,5,0.7,35,75
|
||||
2020/7/25,58,良,13,31,7,0.7,39,109
|
||||
2020/7/26,70,良,26,44,7,0.7,26,124
|
||||
2020/7/27,53,良,22,39,7,1.1,42,44
|
||||
2020/7/28,33,优,11,23,6,0.7,26,64
|
||||
2020/7/29,56,良,28,48,6,0.9,24,107
|
||||
2020/7/30,81,良,24,45,7,0.9,25,137
|
||||
2020/7/31,50,优,9,33,7,0.5,24,99
|
||||
2020/8/1,99,良,15,33,8,0.6,23,158
|
||||
2020/8/2,65,良,25,47,7,0.9,40,117
|
||||
2020/8/3,55,良,18,38,6,0.7,23,106
|
||||
2020/8/4,48,优,9,30,6,0.6,20,95
|
||||
2020/8/5,60,良,23,51,7,1.0,41,111
|
||||
2020/8/6,36,优,8,27,6,0.7,20,72
|
||||
2020/8/7,36,优,10,27,6,0.6,19,71
|
||||
2020/8/8,37,优,16,36,7,0.6,24,73
|
||||
2020/8/9,35,优,18,33,7,0.8,28,66
|
||||
2020/8/10,30,优,11,20,7,0.8,24,53
|
||||
2020/8/11,44,优,15,27,6,0.7,20,88
|
||||
2020/8/12,27,优,8,23,6,0.6,16,53
|
||||
2020/8/13,40,优,11,26,7,0.7,24,80
|
||||
2020/8/14,46,优,10,28,7,0.6,21,91
|
||||
2020/8/15,75,良,15,34,7,0.6,28,129
|
||||
2020/8/16,96,良,19,43,8,0.8,29,155
|
||||
2020/8/17,91,良,21,45,8,0.7,23,149
|
||||
2020/8/18,77,良,30,55,8,0.5,18,132
|
||||
2020/8/19,77,良,26,49,8,0.6,25,132
|
||||
2020/8/20,130,轻度污染,21,41,8,0.8,30,193
|
||||
2020/8/21,88,良,27,45,8,0.9,28,145
|
||||
2020/8/22,87,良,31,53,7,0.8,22,144
|
||||
2020/8/23,112,轻度污染,35,59,8,0.6,17,173
|
||||
2020/8/24,91,良,33,58,10,0.8,28,149
|
||||
2020/8/25,64,良,24,43,9,0.6,26,116
|
||||
2020/8/26,72,良,26,41,8,0.7,20,126
|
||||
2020/8/27,75,良,15,29,8,0.6,21,129
|
||||
2020/8/28,54,良,26,53,12,0.9,39,104
|
||||
2020/8/29,82,良,28,53,11,1.0,35,138
|
||||
2020/8/30,100,良,24,40,9,0.8,32,160
|
||||
2020/8/31,55,良,23,43,10,0.9,44,87
|
||||
2020/9/1,49,优,20,37,10,0.9,39,78
|
||||
2020/9/2,50,优,21,35,8,0.7,26,99
|
||||
2020/9/3,89,良,24,49,11,0.7,45,146
|
||||
2020/9/4,85,良,24,56,8,0.7,42,141
|
||||
2020/9/5,104,轻度污染,31,62,14,0.8,42,164
|
||||
2020/9/6,116,轻度污染,26,54,10,0.6,38,177
|
||||
2020/9/7,114,轻度污染,34,65,11,0.8,58,175
|
||||
2020/9/8,101,轻度污染,38,81,12,0.9,58,161
|
||||
2020/9/9,86,良,46,82,13,0.9,65,143
|
||||
2020/9/10,69,良,50,73,10,1.0,52,84
|
||||
2020/9/11,75,良,24,43,8,0.9,31,130
|
||||
2020/9/12,72,良,26,46,12,0.9,41,126
|
||||
2020/9/13,67,良,29,48,9,0.8,30,120
|
||||
2020/9/14,89,良,33,53,9,0.8,29,146
|
||||
2020/9/15,38,优,16,24,7,0.8,30,64
|
||||
2020/9/16,52,良,19,27,8,0.8,36,102
|
||||
2020/9/17,49,优,15,22,7,0.7,28,98
|
||||
2020/9/18,43,优,14,20,7,0.5,20,86
|
||||
2020/9/19,70,良,21,36,9,0.7,27,124
|
||||
2020/9/20,90,良,26,44,9,0.7,28,148
|
||||
2020/9/21,50,优,19,37,9,0.6,29,100
|
||||
2020/9/22,55,良,31,36,8,0.7,29,105
|
||||
2020/9/23,46,优,17,33,7,0.7,33,92
|
||||
2020/9/24,60,良,27,51,10,0.7,48,106
|
||||
2020/9/25,62,良,21,47,9,0.7,43,114
|
||||
2020/9/26,74,良,29,53,9,0.7,37,128
|
||||
2020/9/27,60,良,18,41,9,0.6,25,112
|
|
507
商务大数据分析/20250430/data/boston_house_prices.csv
Executable file
507
商务大数据分析/20250430/data/boston_house_prices.csv
Executable file
@ -0,0 +1,507 @@
|
||||
犯罪率,居住面积占比,商业用地占比,河流穿行,一氧化氮含量(ppm),房间数(间),住宅占比,平均距离,可达性指数,财产税,学生与老师占比,低收入人群,房屋价格(美元)
|
||||
0.00632,18,2.31,0,0.538,6.575,65.2,4.09,1,296,15.3,4.98,24000
|
||||
0.02731,0,7.07,0,0.469,6.421,78.9,4.9671,2,242,17.8,9.14,21600
|
||||
0.02729,0,7.07,0,0.469,7.185,61.1,4.9671,2,242,17.8,4.03,34700
|
||||
0.03237,0,2.18,0,0.458,6.998,45.8,6.0622,3,222,18.7,2.94,33400
|
||||
0.06905,0,2.18,0,0.458,7.147,54.2,6.0622,3,222,18.7,5.33,36200
|
||||
0.02985,0,2.18,0,0.458,6.43,58.7,6.0622,3,222,18.7,5.21,28700
|
||||
0.08829,12.5,7.87,0,0.524,6.012,66.6,5.5605,5,311,15.2,12.43,22900
|
||||
0.14455,12.5,7.87,0,0.524,6.172,96.1,5.9505,5,311,15.2,19.15,27100
|
||||
0.21124,12.5,7.87,0,0.524,5.631,100,6.0821,5,311,15.2,29.93,16500
|
||||
0.17004,12.5,7.87,0,0.524,6.004,85.9,6.5921,5,311,15.2,17.1,18900
|
||||
0.22489,12.5,7.87,0,0.524,6.377,94.3,6.3467,5,311,15.2,20.45,15000
|
||||
0.11747,12.5,7.87,0,0.524,6.009,82.9,6.2267,5,311,15.2,13.27,18900
|
||||
0.09378,12.5,7.87,0,0.524,5.889,39,5.4509,5,311,15.2,15.71,21700
|
||||
0.62976,0,8.14,0,0.538,5.949,61.8,4.7075,4,307,21,8.26,20400
|
||||
0.63796,0,8.14,0,0.538,6.096,84.5,4.4619,4,307,21,10.26,18200
|
||||
0.62739,0,8.14,0,0.538,5.834,56.5,4.4986,4,307,21,8.47,19900
|
||||
1.05393,0,8.14,0,0.538,5.935,29.3,4.4986,4,307,21,6.58,23100
|
||||
0.7842,0,8.14,0,0.538,5.99,81.7,4.2579,4,307,21,14.67,17500
|
||||
0.80271,0,8.14,0,0.538,5.456,36.6,3.7965,4,307,21,11.69,20200
|
||||
0.7258,0,8.14,0,0.538,5.727,69.5,3.7965,4,307,21,11.28,18200
|
||||
1.25179,0,8.14,0,0.538,5.57,98.1,3.7979,4,307,21,21.02,13600
|
||||
0.85204,0,8.14,0,0.538,5.965,89.2,4.0123,4,307,21,13.83,19600
|
||||
1.23247,0,8.14,0,0.538,6.142,91.7,3.9769,4,307,21,18.72,15200
|
||||
0.98843,0,8.14,0,0.538,5.813,100,4.0952,4,307,21,19.88,14500
|
||||
0.75026,0,8.14,0,0.538,5.924,94.1,4.3996,4,307,21,16.3,15600
|
||||
0.84054,0,8.14,0,0.538,5.599,85.7,4.4546,4,307,21,16.51,13900
|
||||
0.67191,0,8.14,0,0.538,5.813,90.3,4.682,4,307,21,14.81,16600
|
||||
0.95577,0,8.14,0,0.538,6.047,88.8,4.4534,4,307,21,17.28,14800
|
||||
0.77299,0,8.14,0,0.538,6.495,94.4,4.4547,4,307,21,12.8,18400
|
||||
1.00245,0,8.14,0,0.538,6.674,87.3,4.239,4,307,21,11.98,21000
|
||||
1.13081,0,8.14,0,0.538,5.713,94.1,4.233,4,307,21,22.6,12700
|
||||
1.35472,0,8.14,0,0.538,6.072,100,4.175,4,307,21,13.04,14500
|
||||
1.38799,0,8.14,0,0.538,5.95,82,3.99,4,307,21,27.71,13200
|
||||
1.15172,0,8.14,0,0.538,5.701,95,3.7872,4,307,21,18.35,13100
|
||||
1.61282,0,8.14,0,0.538,6.096,96.9,3.7598,4,307,21,20.34,13500
|
||||
0.06417,0,5.96,0,0.499,5.933,68.2,3.3603,5,279,19.2,9.68,18900
|
||||
0.09744,0,5.96,0,0.499,5.841,61.4,3.3779,5,279,19.2,11.41,20000
|
||||
0.08014,0,5.96,0,0.499,5.85,41.5,3.9342,5,279,19.2,8.77,21000
|
||||
0.17505,0,5.96,0,0.499,5.966,30.2,3.8473,5,279,19.2,10.13,24700
|
||||
0.02763,75,2.95,0,0.428,6.595,21.8,5.4011,3,252,18.3,4.32,30800
|
||||
0.03359,75,2.95,0,0.428,7.024,15.8,5.4011,3,252,18.3,1.98,34900
|
||||
0.12744,0,6.91,0,0.448,6.77,2.9,5.7209,3,233,17.9,4.84,26600
|
||||
0.1415,0,6.91,0,0.448,6.169,6.6,5.7209,3,233,17.9,5.81,25300
|
||||
0.15936,0,6.91,0,0.448,6.211,6.5,5.7209,3,233,17.9,7.44,24700
|
||||
0.12269,0,6.91,0,0.448,6.069,40,5.7209,3,233,17.9,9.55,21200
|
||||
0.17142,0,6.91,0,0.448,5.682,33.8,5.1004,3,233,17.9,10.21,19300
|
||||
0.18836,0,6.91,0,0.448,5.786,33.3,5.1004,3,233,17.9,14.15,20000
|
||||
0.22927,0,6.91,0,0.448,6.03,85.5,5.6894,3,233,17.9,18.8,16600
|
||||
0.25387,0,6.91,0,0.448,5.399,95.3,5.87,3,233,17.9,30.81,14400
|
||||
0.21977,0,6.91,0,0.448,5.602,62,6.0877,3,233,17.9,16.2,19400
|
||||
0.08873,21,5.64,0,0.439,5.963,45.7,6.8147,4,243,16.8,13.45,19700
|
||||
0.04337,21,5.64,0,0.439,6.115,63,6.8147,4,243,16.8,9.43,20500
|
||||
0.0536,21,5.64,0,0.439,6.511,21.1,6.8147,4,243,16.8,5.28,25000
|
||||
0.04981,21,5.64,0,0.439,5.998,21.4,6.8147,4,243,16.8,8.43,23400
|
||||
0.0136,75,4,0,0.41,5.888,47.6,7.3197,3,469,21.1,14.8,18900
|
||||
0.01311,90,1.22,0,0.403,7.249,21.9,8.6966,5,226,17.9,4.81,35400
|
||||
0.02055,85,0.74,0,0.41,6.383,35.7,9.1876,2,313,17.3,5.77,24700
|
||||
0.01432,100,1.32,0,0.411,6.816,40.5,8.3248,5,256,15.1,3.95,31600
|
||||
0.15445,25,5.13,0,0.453,6.145,29.2,7.8148,8,284,19.7,6.86,23300
|
||||
0.10328,25,5.13,0,0.453,5.927,47.2,6.932,8,284,19.7,9.22,19600
|
||||
0.14932,25,5.13,0,0.453,5.741,66.2,7.2254,8,284,19.7,13.15,18700
|
||||
0.17171,25,5.13,0,0.453,5.966,93.4,6.8185,8,284,19.7,14.44,16000
|
||||
0.11027,25,5.13,0,0.453,6.456,67.8,7.2255,8,284,19.7,6.73,22200
|
||||
0.1265,25,5.13,0,0.453,6.762,43.4,7.9809,8,284,19.7,9.5,25000
|
||||
0.01951,17.5,1.38,0,0.4161,7.104,59.5,9.2229,3,216,18.6,8.05,33000
|
||||
0.03584,80,3.37,0,0.398,6.29,17.8,6.6115,4,337,16.1,4.67,23500
|
||||
0.04379,80,3.37,0,0.398,5.787,31.1,6.6115,4,337,16.1,10.24,19400
|
||||
0.05789,12.5,6.07,0,0.409,5.878,21.4,6.498,4,345,18.9,8.1,22000
|
||||
0.13554,12.5,6.07,0,0.409,5.594,36.8,6.498,4,345,18.9,13.09,17400
|
||||
0.12816,12.5,6.07,0,0.409,5.885,33,6.498,4,345,18.9,8.79,20900
|
||||
0.08826,0,10.81,0,0.413,6.417,6.6,5.2873,4,305,19.2,6.72,24200
|
||||
0.15876,0,10.81,0,0.413,5.961,17.5,5.2873,4,305,19.2,9.88,21700
|
||||
0.09164,0,10.81,0,0.413,6.065,7.8,5.2873,4,305,19.2,5.52,22800
|
||||
0.19539,0,10.81,0,0.413,6.245,6.2,5.2873,4,305,19.2,7.54,23400
|
||||
0.07896,0,12.83,0,0.437,6.273,6,4.2515,5,398,18.7,6.78,24100
|
||||
0.09512,0,12.83,0,0.437,6.286,45,4.5026,5,398,18.7,8.94,21400
|
||||
0.10153,0,12.83,0,0.437,6.279,74.5,4.0522,5,398,18.7,11.97,20000
|
||||
0.08707,0,12.83,0,0.437,6.14,45.8,4.0905,5,398,18.7,10.27,20800
|
||||
0.05646,0,12.83,0,0.437,6.232,53.7,5.0141,5,398,18.7,12.34,21200
|
||||
0.08387,0,12.83,0,0.437,5.874,36.6,4.5026,5,398,18.7,9.1,20300
|
||||
0.04113,25,4.86,0,0.426,6.727,33.5,5.4007,4,281,19,5.29,28000
|
||||
0.04462,25,4.86,0,0.426,6.619,70.4,5.4007,4,281,19,7.22,23900
|
||||
0.03659,25,4.86,0,0.426,6.302,32.2,5.4007,4,281,19,6.72,24800
|
||||
0.03551,25,4.86,0,0.426,6.167,46.7,5.4007,4,281,19,7.51,22900
|
||||
0.05059,0,4.49,0,0.449,6.389,48,4.7794,3,247,18.5,9.62,23900
|
||||
0.05735,0,4.49,0,0.449,6.63,56.1,4.4377,3,247,18.5,6.53,26600
|
||||
0.05188,0,4.49,0,0.449,6.015,45.1,4.4272,3,247,18.5,12.86,22500
|
||||
0.07151,0,4.49,0,0.449,6.121,56.8,3.7476,3,247,18.5,8.44,22200
|
||||
0.0566,0,3.41,0,0.489,7.007,86.3,3.4217,2,270,17.8,5.5,23600
|
||||
0.05302,0,3.41,0,0.489,7.079,63.1,3.4145,2,270,17.8,5.7,28700
|
||||
0.04684,0,3.41,0,0.489,6.417,66.1,3.0923,2,270,17.8,8.81,22600
|
||||
0.03932,0,3.41,0,0.489,6.405,73.9,3.0921,2,270,17.8,8.2,22000
|
||||
0.04203,28,15.04,0,0.464,6.442,53.6,3.6659,4,270,18.2,8.16,22900
|
||||
0.02875,28,15.04,0,0.464,6.211,28.9,3.6659,4,270,18.2,6.21,25000
|
||||
0.04294,28,15.04,0,0.464,6.249,77.3,3.615,4,270,18.2,10.59,20600
|
||||
0.12204,0,2.89,0,0.445,6.625,57.8,3.4952,2,276,18,6.65,28400
|
||||
0.11504,0,2.89,0,0.445,6.163,69.6,3.4952,2,276,18,11.34,21400
|
||||
0.12083,0,2.89,0,0.445,8.069,76,3.4952,2,276,18,4.21,38700
|
||||
0.08187,0,2.89,0,0.445,7.82,36.9,3.4952,2,276,18,3.57,43800
|
||||
0.0686,0,2.89,0,0.445,7.416,62.5,3.4952,2,276,18,6.19,33200
|
||||
0.14866,0,8.56,0,0.52,6.727,79.9,2.7778,5,384,20.9,9.42,27500
|
||||
0.11432,0,8.56,0,0.52,6.781,71.3,2.8561,5,384,20.9,7.67,26500
|
||||
0.22876,0,8.56,0,0.52,6.405,85.4,2.7147,5,384,20.9,10.63,18600
|
||||
0.21161,0,8.56,0,0.52,6.137,87.4,2.7147,5,384,20.9,13.44,19300
|
||||
0.1396,0,8.56,0,0.52,6.167,90,2.421,5,384,20.9,12.33,20100
|
||||
0.13262,0,8.56,0,0.52,5.851,96.7,2.1069,5,384,20.9,16.47,19500
|
||||
0.1712,0,8.56,0,0.52,5.836,91.9,2.211,5,384,20.9,18.66,19500
|
||||
0.13117,0,8.56,0,0.52,6.127,85.2,2.1224,5,384,20.9,14.09,20400
|
||||
0.12802,0,8.56,0,0.52,6.474,97.1,2.4329,5,384,20.9,12.27,19800
|
||||
0.26363,0,8.56,0,0.52,6.229,91.2,2.5451,5,384,20.9,15.55,19400
|
||||
0.10793,0,8.56,0,0.52,6.195,54.4,2.7778,5,384,20.9,13,21700
|
||||
0.10084,0,10.01,0,0.547,6.715,81.6,2.6775,6,432,17.8,10.16,22800
|
||||
0.12329,0,10.01,0,0.547,5.913,92.9,2.3534,6,432,17.8,16.21,18800
|
||||
0.22212,0,10.01,0,0.547,6.092,95.4,2.548,6,432,17.8,17.09,18700
|
||||
0.14231,0,10.01,0,0.547,6.254,84.2,2.2565,6,432,17.8,10.45,18500
|
||||
0.17134,0,10.01,0,0.547,5.928,88.2,2.4631,6,432,17.8,15.76,18300
|
||||
0.13158,0,10.01,0,0.547,6.176,72.5,2.7301,6,432,17.8,12.04,21200
|
||||
0.15098,0,10.01,0,0.547,6.021,82.6,2.7474,6,432,17.8,10.3,19200
|
||||
0.13058,0,10.01,0,0.547,5.872,73.1,2.4775,6,432,17.8,15.37,20400
|
||||
0.14476,0,10.01,0,0.547,5.731,65.2,2.7592,6,432,17.8,13.61,19300
|
||||
0.06899,0,25.65,0,0.581,5.87,69.7,2.2577,2,188,19.1,14.37,22000
|
||||
0.07165,0,25.65,0,0.581,6.004,84.1,2.1974,2,188,19.1,14.27,20300
|
||||
0.09299,0,25.65,0,0.581,5.961,92.9,2.0869,2,188,19.1,17.93,20500
|
||||
0.15038,0,25.65,0,0.581,5.856,97,1.9444,2,188,19.1,25.41,17300
|
||||
0.09849,0,25.65,0,0.581,5.879,95.8,2.0063,2,188,19.1,17.58,18800
|
||||
0.16902,0,25.65,0,0.581,5.986,88.4,1.9929,2,188,19.1,14.81,21400
|
||||
0.38735,0,25.65,0,0.581,5.613,95.6,1.7572,2,188,19.1,27.26,15700
|
||||
0.25915,0,21.89,0,0.624,5.693,96,1.7883,4,437,21.2,17.19,16200
|
||||
0.32543,0,21.89,0,0.624,6.431,98.8,1.8125,4,437,21.2,15.39,18000
|
||||
0.88125,0,21.89,0,0.624,5.637,94.7,1.9799,4,437,21.2,18.34,14300
|
||||
0.34006,0,21.89,0,0.624,6.458,98.9,2.1185,4,437,21.2,12.6,19200
|
||||
1.19294,0,21.89,0,0.624,6.326,97.7,2.271,4,437,21.2,12.26,19600
|
||||
0.59005,0,21.89,0,0.624,6.372,97.9,2.3274,4,437,21.2,11.12,23000
|
||||
0.32982,0,21.89,0,0.624,5.822,95.4,2.4699,4,437,21.2,15.03,18400
|
||||
0.97617,0,21.89,0,0.624,5.757,98.4,2.346,4,437,21.2,17.31,15600
|
||||
0.55778,0,21.89,0,0.624,6.335,98.2,2.1107,4,437,21.2,16.96,18100
|
||||
0.32264,0,21.89,0,0.624,5.942,93.5,1.9669,4,437,21.2,16.9,17400
|
||||
0.35233,0,21.89,0,0.624,6.454,98.4,1.8498,4,437,21.2,14.59,17100
|
||||
0.2498,0,21.89,0,0.624,5.857,98.2,1.6686,4,437,21.2,21.32,13300
|
||||
0.54452,0,21.89,0,0.624,6.151,97.9,1.6687,4,437,21.2,18.46,17800
|
||||
0.2909,0,21.89,0,0.624,6.174,93.6,1.6119,4,437,21.2,24.16,14000
|
||||
1.62864,0,21.89,0,0.624,5.019,100,1.4394,4,437,21.2,34.41,14400
|
||||
3.32105,0,19.58,1,0.871,5.403,100,1.3216,5,403,14.7,26.82,13400
|
||||
4.0974,0,19.58,0,0.871,5.468,100,1.4118,5,403,14.7,26.42,15600
|
||||
2.77974,0,19.58,0,0.871,4.903,97.8,1.3459,5,403,14.7,29.29,11800
|
||||
2.37934,0,19.58,0,0.871,6.13,100,1.4191,5,403,14.7,27.8,13800
|
||||
2.15505,0,19.58,0,0.871,5.628,100,1.5166,5,403,14.7,16.65,15600
|
||||
2.36862,0,19.58,0,0.871,4.926,95.7,1.4608,5,403,14.7,29.53,14600
|
||||
2.33099,0,19.58,0,0.871,5.186,93.8,1.5296,5,403,14.7,28.32,17800
|
||||
2.73397,0,19.58,0,0.871,5.597,94.9,1.5257,5,403,14.7,21.45,15400
|
||||
1.6566,0,19.58,0,0.871,6.122,97.3,1.618,5,403,14.7,14.1,21500
|
||||
1.49632,0,19.58,0,0.871,5.404,100,1.5916,5,403,14.7,13.28,19600
|
||||
1.12658,0,19.58,1,0.871,5.012,88,1.6102,5,403,14.7,12.12,15300
|
||||
2.14918,0,19.58,0,0.871,5.709,98.5,1.6232,5,403,14.7,15.79,19400
|
||||
1.41385,0,19.58,1,0.871,6.129,96,1.7494,5,403,14.7,15.12,17000
|
||||
3.53501,0,19.58,1,0.871,6.152,82.6,1.7455,5,403,14.7,15.02,15600
|
||||
2.44668,0,19.58,0,0.871,5.272,94,1.7364,5,403,14.7,16.14,13100
|
||||
1.22358,0,19.58,0,0.605,6.943,97.4,1.8773,5,403,14.7,4.59,41300
|
||||
1.34284,0,19.58,0,0.605,6.066,100,1.7573,5,403,14.7,6.43,24300
|
||||
1.42502,0,19.58,0,0.871,6.51,100,1.7659,5,403,14.7,7.39,23300
|
||||
1.27346,0,19.58,1,0.605,6.25,92.6,1.7984,5,403,14.7,5.5,27000
|
||||
1.46336,0,19.58,0,0.605,7.489,90.8,1.9709,5,403,14.7,1.73,50000
|
||||
1.83377,0,19.58,1,0.605,7.802,98.2,2.0407,5,403,14.7,1.92,50000
|
||||
1.51902,0,19.58,1,0.605,8.375,93.9,2.162,5,403,14.7,3.32,50000
|
||||
2.24236,0,19.58,0,0.605,5.854,91.8,2.422,5,403,14.7,11.64,22700
|
||||
2.924,0,19.58,0,0.605,6.101,93,2.2834,5,403,14.7,9.81,25000
|
||||
2.01019,0,19.58,0,0.605,7.929,96.2,2.0459,5,403,14.7,3.7,50000
|
||||
1.80028,0,19.58,0,0.605,5.877,79.2,2.4259,5,403,14.7,12.14,23800
|
||||
2.3004,0,19.58,0,0.605,6.319,96.1,2.1,5,403,14.7,11.1,23800
|
||||
2.44953,0,19.58,0,0.605,6.402,95.2,2.2625,5,403,14.7,11.32,22300
|
||||
1.20742,0,19.58,0,0.605,5.875,94.6,2.4259,5,403,14.7,14.43,17400
|
||||
2.3139,0,19.58,0,0.605,5.88,97.3,2.3887,5,403,14.7,12.03,19100
|
||||
0.13914,0,4.05,0,0.51,5.572,88.5,2.5961,5,296,16.6,14.69,23100
|
||||
0.09178,0,4.05,0,0.51,6.416,84.1,2.6463,5,296,16.6,9.04,23600
|
||||
0.08447,0,4.05,0,0.51,5.859,68.7,2.7019,5,296,16.6,9.64,22600
|
||||
0.06664,0,4.05,0,0.51,6.546,33.1,3.1323,5,296,16.6,5.33,29400
|
||||
0.07022,0,4.05,0,0.51,6.02,47.2,3.5549,5,296,16.6,10.11,23200
|
||||
0.05425,0,4.05,0,0.51,6.315,73.4,3.3175,5,296,16.6,6.29,24600
|
||||
0.06642,0,4.05,0,0.51,6.86,74.4,2.9153,5,296,16.6,6.92,29900
|
||||
0.0578,0,2.46,0,0.488,6.98,58.4,2.829,3,193,17.8,5.04,37200
|
||||
0.06588,0,2.46,0,0.488,7.765,83.3,2.741,3,193,17.8,7.56,39800
|
||||
0.06888,0,2.46,0,0.488,6.144,62.2,2.5979,3,193,17.8,9.45,36200
|
||||
0.09103,0,2.46,0,0.488,7.155,92.2,2.7006,3,193,17.8,4.82,37900
|
||||
0.10008,0,2.46,0,0.488,6.563,95.6,2.847,3,193,17.8,5.68,32500
|
||||
0.08308,0,2.46,0,0.488,5.604,89.8,2.9879,3,193,17.8,13.98,26400
|
||||
0.06047,0,2.46,0,0.488,6.153,68.8,3.2797,3,193,17.8,13.15,29600
|
||||
0.05602,0,2.46,0,0.488,7.831,53.6,3.1992,3,193,17.8,4.45,50000
|
||||
0.07875,45,3.44,0,0.437,6.782,41.1,3.7886,5,398,15.2,6.68,32000
|
||||
0.12579,45,3.44,0,0.437,6.556,29.1,4.5667,5,398,15.2,4.56,29800
|
||||
0.0837,45,3.44,0,0.437,7.185,38.9,4.5667,5,398,15.2,5.39,34900
|
||||
0.09068,45,3.44,0,0.437,6.951,21.5,6.4798,5,398,15.2,5.1,37000
|
||||
0.06911,45,3.44,0,0.437,6.739,30.8,6.4798,5,398,15.2,4.69,30500
|
||||
0.08664,45,3.44,0,0.437,7.178,26.3,6.4798,5,398,15.2,2.87,36400
|
||||
0.02187,60,2.93,0,0.401,6.8,9.9,6.2196,1,265,15.6,5.03,31100
|
||||
0.01439,60,2.93,0,0.401,6.604,18.8,6.2196,1,265,15.6,4.38,29100
|
||||
0.01381,80,0.46,0,0.422,7.875,32,5.6484,4,255,14.4,2.97,50000
|
||||
0.04011,80,1.52,0,0.404,7.287,34.1,7.309,2,329,12.6,4.08,33300
|
||||
0.04666,80,1.52,0,0.404,7.107,36.6,7.309,2,329,12.6,8.61,30300
|
||||
0.03768,80,1.52,0,0.404,7.274,38.3,7.309,2,329,12.6,6.62,34600
|
||||
0.0315,95,1.47,0,0.403,6.975,15.3,7.6534,3,402,17,4.56,34900
|
||||
0.01778,95,1.47,0,0.403,7.135,13.9,7.6534,3,402,17,4.45,32900
|
||||
0.03445,82.5,2.03,0,0.415,6.162,38.4,6.27,2,348,14.7,7.43,24100
|
||||
0.02177,82.5,2.03,0,0.415,7.61,15.7,6.27,2,348,14.7,3.11,42300
|
||||
0.0351,95,2.68,0,0.4161,7.853,33.2,5.118,4,224,14.7,3.81,48500
|
||||
0.02009,95,2.68,0,0.4161,8.034,31.9,5.118,4,224,14.7,2.88,50000
|
||||
0.13642,0,10.59,0,0.489,5.891,22.3,3.9454,4,277,18.6,10.87,22600
|
||||
0.22969,0,10.59,0,0.489,6.326,52.5,4.3549,4,277,18.6,10.97,24400
|
||||
0.25199,0,10.59,0,0.489,5.783,72.7,4.3549,4,277,18.6,18.06,22500
|
||||
0.13587,0,10.59,1,0.489,6.064,59.1,4.2392,4,277,18.6,14.66,24400
|
||||
0.43571,0,10.59,1,0.489,5.344,100,3.875,4,277,18.6,23.09,20000
|
||||
0.17446,0,10.59,1,0.489,5.96,92.1,3.8771,4,277,18.6,17.27,21700
|
||||
0.37578,0,10.59,1,0.489,5.404,88.6,3.665,4,277,18.6,23.98,19300
|
||||
0.21719,0,10.59,1,0.489,5.807,53.8,3.6526,4,277,18.6,16.03,22400
|
||||
0.14052,0,10.59,0,0.489,6.375,32.3,3.9454,4,277,18.6,9.38,28100
|
||||
0.28955,0,10.59,0,0.489,5.412,9.8,3.5875,4,277,18.6,29.55,23700
|
||||
0.19802,0,10.59,0,0.489,6.182,42.4,3.9454,4,277,18.6,9.47,25000
|
||||
0.0456,0,13.89,1,0.55,5.888,56,3.1121,5,276,16.4,13.51,23300
|
||||
0.07013,0,13.89,0,0.55,6.642,85.1,3.4211,5,276,16.4,9.69,28700
|
||||
0.11069,0,13.89,1,0.55,5.951,93.8,2.8893,5,276,16.4,17.92,21500
|
||||
0.11425,0,13.89,1,0.55,6.373,92.4,3.3633,5,276,16.4,10.5,23000
|
||||
0.35809,0,6.2,1,0.507,6.951,88.5,2.8617,8,307,17.4,9.71,26700
|
||||
0.40771,0,6.2,1,0.507,6.164,91.3,3.048,8,307,17.4,21.46,21700
|
||||
0.62356,0,6.2,1,0.507,6.879,77.7,3.2721,8,307,17.4,9.93,27500
|
||||
0.6147,0,6.2,0,0.507,6.618,80.8,3.2721,8,307,17.4,7.6,30100
|
||||
0.31533,0,6.2,0,0.504,8.266,78.3,2.8944,8,307,17.4,4.14,44800
|
||||
0.52693,0,6.2,0,0.504,8.725,83,2.8944,8,307,17.4,4.63,50000
|
||||
0.38214,0,6.2,0,0.504,8.04,86.5,3.2157,8,307,17.4,3.13,37600
|
||||
0.41238,0,6.2,0,0.504,7.163,79.9,3.2157,8,307,17.4,6.36,31600
|
||||
0.29819,0,6.2,0,0.504,7.686,17,3.3751,8,307,17.4,3.92,46700
|
||||
0.44178,0,6.2,0,0.504,6.552,21.4,3.3751,8,307,17.4,3.76,31500
|
||||
0.537,0,6.2,0,0.504,5.981,68.1,3.6715,8,307,17.4,11.65,24300
|
||||
0.46296,0,6.2,0,0.504,7.412,76.9,3.6715,8,307,17.4,5.25,31700
|
||||
0.57529,0,6.2,0,0.507,8.337,73.3,3.8384,8,307,17.4,2.47,41700
|
||||
0.33147,0,6.2,0,0.507,8.247,70.4,3.6519,8,307,17.4,3.95,48300
|
||||
0.44791,0,6.2,1,0.507,6.726,66.5,3.6519,8,307,17.4,8.05,29000
|
||||
0.33045,0,6.2,0,0.507,6.086,61.5,3.6519,8,307,17.4,10.88,24000
|
||||
0.52058,0,6.2,1,0.507,6.631,76.5,4.148,8,307,17.4,9.54,25100
|
||||
0.51183,0,6.2,0,0.507,7.358,71.6,4.148,8,307,17.4,4.73,31500
|
||||
0.08244,30,4.93,0,0.428,6.481,18.5,6.1899,6,300,16.6,6.36,23700
|
||||
0.09252,30,4.93,0,0.428,6.606,42.2,6.1899,6,300,16.6,7.37,23300
|
||||
0.11329,30,4.93,0,0.428,6.897,54.3,6.3361,6,300,16.6,11.38,22000
|
||||
0.10612,30,4.93,0,0.428,6.095,65.1,6.3361,6,300,16.6,12.4,20100
|
||||
0.1029,30,4.93,0,0.428,6.358,52.9,7.0355,6,300,16.6,11.22,22200
|
||||
0.12757,30,4.93,0,0.428,6.393,7.8,7.0355,6,300,16.6,5.19,23700
|
||||
0.20608,22,5.86,0,0.431,5.593,76.5,7.9549,7,330,19.1,12.5,17600
|
||||
0.19133,22,5.86,0,0.431,5.605,70.2,7.9549,7,330,19.1,18.46,18500
|
||||
0.33983,22,5.86,0,0.431,6.108,34.9,8.0555,7,330,19.1,9.16,24300
|
||||
0.19657,22,5.86,0,0.431,6.226,79.2,8.0555,7,330,19.1,10.15,20500
|
||||
0.16439,22,5.86,0,0.431,6.433,49.1,7.8265,7,330,19.1,9.52,24500
|
||||
0.19073,22,5.86,0,0.431,6.718,17.5,7.8265,7,330,19.1,6.56,26200
|
||||
0.1403,22,5.86,0,0.431,6.487,13,7.3967,7,330,19.1,5.9,24400
|
||||
0.21409,22,5.86,0,0.431,6.438,8.9,7.3967,7,330,19.1,3.59,24800
|
||||
0.08221,22,5.86,0,0.431,6.957,6.8,8.9067,7,330,19.1,3.53,29600
|
||||
0.36894,22,5.86,0,0.431,8.259,8.4,8.9067,7,330,19.1,3.54,42800
|
||||
0.04819,80,3.64,0,0.392,6.108,32,9.2203,1,315,16.4,6.57,21900
|
||||
0.03548,80,3.64,0,0.392,5.876,19.1,9.2203,1,315,16.4,9.25,20900
|
||||
0.01538,90,3.75,0,0.394,7.454,34.2,6.3361,3,244,15.9,3.11,44000
|
||||
0.61154,20,3.97,0,0.647,8.704,86.9,1.801,5,264,13,5.12,50000
|
||||
0.66351,20,3.97,0,0.647,7.333,100,1.8946,5,264,13,7.79,36000
|
||||
0.65665,20,3.97,0,0.647,6.842,100,2.0107,5,264,13,6.9,30100
|
||||
0.54011,20,3.97,0,0.647,7.203,81.8,2.1121,5,264,13,9.59,33800
|
||||
0.53412,20,3.97,0,0.647,7.52,89.4,2.1398,5,264,13,7.26,43100
|
||||
0.52014,20,3.97,0,0.647,8.398,91.5,2.2885,5,264,13,5.91,48800
|
||||
0.82526,20,3.97,0,0.647,7.327,94.5,2.0788,5,264,13,11.25,31000
|
||||
0.55007,20,3.97,0,0.647,7.206,91.6,1.9301,5,264,13,8.1,36500
|
||||
0.76162,20,3.97,0,0.647,5.56,62.8,1.9865,5,264,13,10.45,22800
|
||||
0.7857,20,3.97,0,0.647,7.014,84.6,2.1329,5,264,13,14.79,30700
|
||||
0.57834,20,3.97,0,0.575,8.297,67,2.4216,5,264,13,7.44,50000
|
||||
0.5405,20,3.97,0,0.575,7.47,52.6,2.872,5,264,13,3.16,43500
|
||||
0.09065,20,6.96,1,0.464,5.92,61.5,3.9175,3,223,18.6,13.65,20700
|
||||
0.29916,20,6.96,0,0.464,5.856,42.1,4.429,3,223,18.6,13,21100
|
||||
0.16211,20,6.96,0,0.464,6.24,16.3,4.429,3,223,18.6,6.59,25200
|
||||
0.1146,20,6.96,0,0.464,6.538,58.7,3.9175,3,223,18.6,7.73,24400
|
||||
0.22188,20,6.96,1,0.464,7.691,51.8,4.3665,3,223,18.6,6.58,35200
|
||||
0.05644,40,6.41,1,0.447,6.758,32.9,4.0776,4,254,17.6,3.53,32400
|
||||
0.09604,40,6.41,0,0.447,6.854,42.8,4.2673,4,254,17.6,2.98,32000
|
||||
0.10469,40,6.41,1,0.447,7.267,49,4.7872,4,254,17.6,6.05,33200
|
||||
0.06127,40,6.41,1,0.447,6.826,27.6,4.8628,4,254,17.6,4.16,33100
|
||||
0.07978,40,6.41,0,0.447,6.482,32.1,4.1403,4,254,17.6,7.19,29100
|
||||
0.21038,20,3.33,0,0.4429,6.812,32.2,4.1007,5,216,14.9,4.85,35100
|
||||
0.03578,20,3.33,0,0.4429,7.82,64.5,4.6947,5,216,14.9,3.76,45400
|
||||
0.03705,20,3.33,0,0.4429,6.968,37.2,5.2447,5,216,14.9,4.59,35400
|
||||
0.06129,20,3.33,1,0.4429,7.645,49.7,5.2119,5,216,14.9,3.01,46000
|
||||
0.01501,90,1.21,1,0.401,7.923,24.8,5.885,1,198,13.6,3.16,50000
|
||||
0.00906,90,2.97,0,0.4,7.088,20.8,7.3073,1,285,15.3,7.85,32200
|
||||
0.01096,55,2.25,0,0.389,6.453,31.9,7.3073,1,300,15.3,8.23,22000
|
||||
0.01965,80,1.76,0,0.385,6.23,31.5,9.0892,1,241,18.2,12.93,20100
|
||||
0.03871,52.5,5.32,0,0.405,6.209,31.3,7.3172,6,293,16.6,7.14,23200
|
||||
0.0459,52.5,5.32,0,0.405,6.315,45.6,7.3172,6,293,16.6,7.6,22300
|
||||
0.04297,52.5,5.32,0,0.405,6.565,22.9,7.3172,6,293,16.6,9.51,24800
|
||||
0.03502,80,4.95,0,0.411,6.861,27.9,5.1167,4,245,19.2,3.33,28500
|
||||
0.07886,80,4.95,0,0.411,7.148,27.7,5.1167,4,245,19.2,3.56,37300
|
||||
0.03615,80,4.95,0,0.411,6.63,23.4,5.1167,4,245,19.2,4.7,27900
|
||||
0.08265,0,13.92,0,0.437,6.127,18.4,5.5027,4,289,16,8.58,23900
|
||||
0.08199,0,13.92,0,0.437,6.009,42.3,5.5027,4,289,16,10.4,21700
|
||||
0.12932,0,13.92,0,0.437,6.678,31.1,5.9604,4,289,16,6.27,28600
|
||||
0.05372,0,13.92,0,0.437,6.549,51,5.9604,4,289,16,7.39,27100
|
||||
0.14103,0,13.92,0,0.437,5.79,58,6.32,4,289,16,15.84,20300
|
||||
0.06466,70,2.24,0,0.4,6.345,20.1,7.8278,5,358,14.8,4.97,22500
|
||||
0.05561,70,2.24,0,0.4,7.041,10,7.8278,5,358,14.8,4.74,29000
|
||||
0.04417,70,2.24,0,0.4,6.871,47.4,7.8278,5,358,14.8,6.07,24800
|
||||
0.03537,34,6.09,0,0.433,6.59,40.4,5.4917,7,329,16.1,9.5,22000
|
||||
0.09266,34,6.09,0,0.433,6.495,18.4,5.4917,7,329,16.1,8.67,26400
|
||||
0.1,34,6.09,0,0.433,6.982,17.7,5.4917,7,329,16.1,4.86,33100
|
||||
0.05515,33,2.18,0,0.472,7.236,41.1,4.022,7,222,18.4,6.93,36100
|
||||
0.05479,33,2.18,0,0.472,6.616,58.1,3.37,7,222,18.4,8.93,28400
|
||||
0.07503,33,2.18,0,0.472,7.42,71.9,3.0992,7,222,18.4,6.47,33400
|
||||
0.04932,33,2.18,0,0.472,6.849,70.3,3.1827,7,222,18.4,7.53,28200
|
||||
0.49298,0,9.9,0,0.544,6.635,82.5,3.3175,4,304,18.4,4.54,22800
|
||||
0.3494,0,9.9,0,0.544,5.972,76.7,3.1025,4,304,18.4,9.97,20300
|
||||
2.63548,0,9.9,0,0.544,4.973,37.8,2.5194,4,304,18.4,12.64,16100
|
||||
0.79041,0,9.9,0,0.544,6.122,52.8,2.6403,4,304,18.4,5.98,22100
|
||||
0.26169,0,9.9,0,0.544,6.023,90.4,2.834,4,304,18.4,11.72,19400
|
||||
0.26938,0,9.9,0,0.544,6.266,82.8,3.2628,4,304,18.4,7.9,21600
|
||||
0.3692,0,9.9,0,0.544,6.567,87.3,3.6023,4,304,18.4,9.28,23800
|
||||
0.25356,0,9.9,0,0.544,5.705,77.7,3.945,4,304,18.4,11.5,16200
|
||||
0.31827,0,9.9,0,0.544,5.914,83.2,3.9986,4,304,18.4,18.33,17800
|
||||
0.24522,0,9.9,0,0.544,5.782,71.7,4.0317,4,304,18.4,15.94,19800
|
||||
0.40202,0,9.9,0,0.544,6.382,67.2,3.5325,4,304,18.4,10.36,23100
|
||||
0.47547,0,9.9,0,0.544,6.113,58.8,4.0019,4,304,18.4,12.73,21000
|
||||
0.1676,0,7.38,0,0.493,6.426,52.3,4.5404,5,287,19.6,7.2,23800
|
||||
0.18159,0,7.38,0,0.493,6.376,54.3,4.5404,5,287,19.6,6.87,23100
|
||||
0.35114,0,7.38,0,0.493,6.041,49.9,4.7211,5,287,19.6,7.7,20400
|
||||
0.28392,0,7.38,0,0.493,5.708,74.3,4.7211,5,287,19.6,11.74,18500
|
||||
0.34109,0,7.38,0,0.493,6.415,40.1,4.7211,5,287,19.6,6.12,25000
|
||||
0.19186,0,7.38,0,0.493,6.431,14.7,5.4159,5,287,19.6,5.08,24600
|
||||
0.30347,0,7.38,0,0.493,6.312,28.9,5.4159,5,287,19.6,6.15,23000
|
||||
0.24103,0,7.38,0,0.493,6.083,43.7,5.4159,5,287,19.6,12.79,22200
|
||||
0.06617,0,3.24,0,0.46,5.868,25.8,5.2146,4,430,16.9,9.97,19300
|
||||
0.06724,0,3.24,0,0.46,6.333,17.2,5.2146,4,430,16.9,7.34,22600
|
||||
0.04544,0,3.24,0,0.46,6.144,32.2,5.8736,4,430,16.9,9.09,19800
|
||||
0.05023,35,6.06,0,0.4379,5.706,28.4,6.6407,1,304,16.9,12.43,17100
|
||||
0.03466,35,6.06,0,0.4379,6.031,23.3,6.6407,1,304,16.9,7.83,19400
|
||||
0.05083,0,5.19,0,0.515,6.316,38.1,6.4584,5,224,20.2,5.68,22200
|
||||
0.03738,0,5.19,0,0.515,6.31,38.5,6.4584,5,224,20.2,6.75,20700
|
||||
0.03961,0,5.19,0,0.515,6.037,34.5,5.9853,5,224,20.2,8.01,21100
|
||||
0.03427,0,5.19,0,0.515,5.869,46.3,5.2311,5,224,20.2,9.8,19500
|
||||
0.03041,0,5.19,0,0.515,5.895,59.6,5.615,5,224,20.2,10.56,18500
|
||||
0.03306,0,5.19,0,0.515,6.059,37.3,4.8122,5,224,20.2,8.51,20600
|
||||
0.05497,0,5.19,0,0.515,5.985,45.4,4.8122,5,224,20.2,9.74,19000
|
||||
0.06151,0,5.19,0,0.515,5.968,58.5,4.8122,5,224,20.2,9.29,18700
|
||||
0.01301,35,1.52,0,0.442,7.241,49.3,7.0379,1,284,15.5,5.49,32700
|
||||
0.02498,0,1.89,0,0.518,6.54,59.7,6.2669,1,422,15.9,8.65,16500
|
||||
0.02543,55,3.78,0,0.484,6.696,56.4,5.7321,5,370,17.6,7.18,23900
|
||||
0.03049,55,3.78,0,0.484,6.874,28.1,6.4654,5,370,17.6,4.61,31200
|
||||
0.03113,0,4.39,0,0.442,6.014,48.5,8.0136,3,352,18.8,10.53,17500
|
||||
0.06162,0,4.39,0,0.442,5.898,52.3,8.0136,3,352,18.8,12.67,17200
|
||||
0.0187,85,4.15,0,0.429,6.516,27.7,8.5353,4,351,17.9,6.36,23100
|
||||
0.01501,80,2.01,0,0.435,6.635,29.7,8.344,4,280,17,5.99,24500
|
||||
0.02899,40,1.25,0,0.429,6.939,34.5,8.7921,1,335,19.7,5.89,26600
|
||||
0.06211,40,1.25,0,0.429,6.49,44.4,8.7921,1,335,19.7,5.98,22900
|
||||
0.0795,60,1.69,0,0.411,6.579,35.9,10.7103,4,411,18.3,5.49,24100
|
||||
0.07244,60,1.69,0,0.411,5.884,18.5,10.7103,4,411,18.3,7.79,18600
|
||||
0.01709,90,2.02,0,0.41,6.728,36.1,12.1265,5,187,17,4.5,30100
|
||||
0.04301,80,1.91,0,0.413,5.663,21.9,10.5857,4,334,22,8.05,18200
|
||||
0.10659,80,1.91,0,0.413,5.936,19.5,10.5857,4,334,22,5.57,20600
|
||||
8.98296,0,18.1,1,0.77,6.212,97.4,2.1222,24,666,20.2,17.6,17800
|
||||
3.8497,0,18.1,1,0.77,6.395,91,2.5052,24,666,20.2,13.27,21700
|
||||
5.20177,0,18.1,1,0.77,6.127,83.4,2.7227,24,666,20.2,11.48,22700
|
||||
4.26131,0,18.1,0,0.77,6.112,81.3,2.5091,24,666,20.2,12.67,22600
|
||||
4.54192,0,18.1,0,0.77,6.398,88,2.5182,24,666,20.2,7.79,25000
|
||||
3.83684,0,18.1,0,0.77,6.251,91.1,2.2955,24,666,20.2,14.19,19900
|
||||
3.67822,0,18.1,0,0.77,5.362,96.2,2.1036,24,666,20.2,10.19,20800
|
||||
4.22239,0,18.1,1,0.77,5.803,89,1.9047,24,666,20.2,14.64,16800
|
||||
3.47428,0,18.1,1,0.718,8.78,82.9,1.9047,24,666,20.2,5.29,21900
|
||||
4.55587,0,18.1,0,0.718,3.561,87.9,1.6132,24,666,20.2,7.12,27500
|
||||
3.69695,0,18.1,0,0.718,4.963,91.4,1.7523,24,666,20.2,14,21900
|
||||
13.5222,0,18.1,0,0.631,3.863,100,1.5106,24,666,20.2,13.33,23100
|
||||
4.89822,0,18.1,0,0.631,4.97,100,1.3325,24,666,20.2,3.26,50000
|
||||
5.66998,0,18.1,1,0.631,6.683,96.8,1.3567,24,666,20.2,3.73,50000
|
||||
6.53876,0,18.1,1,0.631,7.016,97.5,1.2024,24,666,20.2,2.96,50000
|
||||
9.2323,0,18.1,0,0.631,6.216,100,1.1691,24,666,20.2,9.53,50000
|
||||
8.26725,0,18.1,1,0.668,5.875,89.6,1.1296,24,666,20.2,8.88,50000
|
||||
11.1081,0,18.1,0,0.668,4.906,100,1.1742,24,666,20.2,34.77,13800
|
||||
18.4982,0,18.1,0,0.668,4.138,100,1.137,24,666,20.2,37.97,13800
|
||||
19.6091,0,18.1,0,0.671,7.313,97.9,1.3163,24,666,20.2,13.44,15000
|
||||
15.288,0,18.1,0,0.671,6.649,93.3,1.3449,24,666,20.2,23.24,13900
|
||||
9.82349,0,18.1,0,0.671,6.794,98.8,1.358,24,666,20.2,21.24,13300
|
||||
23.6482,0,18.1,0,0.671,6.38,96.2,1.3861,24,666,20.2,23.69,13100
|
||||
17.8667,0,18.1,0,0.671,6.223,100,1.3861,24,666,20.2,21.78,10200
|
||||
88.9762,0,18.1,0,0.671,6.968,91.9,1.4165,24,666,20.2,17.21,10400
|
||||
15.8744,0,18.1,0,0.671,6.545,99.1,1.5192,24,666,20.2,21.08,10900
|
||||
9.18702,0,18.1,0,0.7,5.536,100,1.5804,24,666,20.2,23.6,11300
|
||||
7.99248,0,18.1,0,0.7,5.52,100,1.5331,24,666,20.2,24.56,12300
|
||||
20.0849,0,18.1,0,0.7,4.368,91.2,1.4395,24,666,20.2,30.63,8800
|
||||
16.8118,0,18.1,0,0.7,5.277,98.1,1.4261,24,666,20.2,30.81,7200
|
||||
24.3938,0,18.1,0,0.7,4.652,100,1.4672,24,666,20.2,28.28,10500
|
||||
22.5971,0,18.1,0,0.7,5,89.5,1.5184,24,666,20.2,31.99,7400
|
||||
14.3337,0,18.1,0,0.7,4.88,100,1.5895,24,666,20.2,30.62,10200
|
||||
8.15174,0,18.1,0,0.7,5.39,98.9,1.7281,24,666,20.2,20.85,11500
|
||||
6.96215,0,18.1,0,0.7,5.713,97,1.9265,24,666,20.2,17.11,15100
|
||||
5.29305,0,18.1,0,0.7,6.051,82.5,2.1678,24,666,20.2,18.76,23200
|
||||
11.5779,0,18.1,0,0.7,5.036,97,1.77,24,666,20.2,25.68,9700
|
||||
8.64476,0,18.1,0,0.693,6.193,92.6,1.7912,24,666,20.2,15.17,13800
|
||||
13.3598,0,18.1,0,0.693,5.887,94.7,1.7821,24,666,20.2,16.35,12700
|
||||
8.71675,0,18.1,0,0.693,6.471,98.8,1.7257,24,666,20.2,17.12,13100
|
||||
5.87205,0,18.1,0,0.693,6.405,96,1.6768,24,666,20.2,19.37,12500
|
||||
7.67202,0,18.1,0,0.693,5.747,98.9,1.6334,24,666,20.2,19.92,8500
|
||||
38.3518,0,18.1,0,0.693,5.453,100,1.4896,24,666,20.2,30.59,5000
|
||||
9.91655,0,18.1,0,0.693,5.852,77.8,1.5004,24,666,20.2,29.97,6300
|
||||
25.0461,0,18.1,0,0.693,5.987,100,1.5888,24,666,20.2,26.77,5600
|
||||
14.2362,0,18.1,0,0.693,6.343,100,1.5741,24,666,20.2,20.32,7200
|
||||
9.59571,0,18.1,0,0.693,6.404,100,1.639,24,666,20.2,20.31,12100
|
||||
24.8017,0,18.1,0,0.693,5.349,96,1.7028,24,666,20.2,19.77,8300
|
||||
41.5292,0,18.1,0,0.693,5.531,85.4,1.6074,24,666,20.2,27.38,8500
|
||||
67.9208,0,18.1,0,0.693,5.683,100,1.4254,24,666,20.2,22.98,5000
|
||||
20.7162,0,18.1,0,0.659,4.138,100,1.1781,24,666,20.2,23.34,11900
|
||||
11.9511,0,18.1,0,0.659,5.608,100,1.2852,24,666,20.2,12.13,27900
|
||||
7.40389,0,18.1,0,0.597,5.617,97.9,1.4547,24,666,20.2,26.4,17200
|
||||
14.4383,0,18.1,0,0.597,6.852,100,1.4655,24,666,20.2,19.78,27500
|
||||
51.1358,0,18.1,0,0.597,5.757,100,1.413,24,666,20.2,10.11,15000
|
||||
14.0507,0,18.1,0,0.597,6.657,100,1.5275,24,666,20.2,21.22,17200
|
||||
18.811,0,18.1,0,0.597,4.628,100,1.5539,24,666,20.2,34.37,17900
|
||||
28.6558,0,18.1,0,0.597,5.155,100,1.5894,24,666,20.2,20.08,16300
|
||||
45.7461,0,18.1,0,0.693,4.519,100,1.6582,24,666,20.2,36.98,7000
|
||||
18.0846,0,18.1,0,0.679,6.434,100,1.8347,24,666,20.2,29.05,7200
|
||||
10.8342,0,18.1,0,0.679,6.782,90.8,1.8195,24,666,20.2,25.79,7500
|
||||
25.9406,0,18.1,0,0.679,5.304,89.1,1.6475,24,666,20.2,26.64,10400
|
||||
73.5341,0,18.1,0,0.679,5.957,100,1.8026,24,666,20.2,20.62,8800
|
||||
11.8123,0,18.1,0,0.718,6.824,76.5,1.794,24,666,20.2,22.74,8400
|
||||
11.0874,0,18.1,0,0.718,6.411,100,1.8589,24,666,20.2,15.02,16700
|
||||
7.02259,0,18.1,0,0.718,6.006,95.3,1.8746,24,666,20.2,15.7,14200
|
||||
12.0482,0,18.1,0,0.614,5.648,87.6,1.9512,24,666,20.2,14.1,20800
|
||||
7.05042,0,18.1,0,0.614,6.103,85.1,2.0218,24,666,20.2,23.29,13400
|
||||
8.79212,0,18.1,0,0.584,5.565,70.6,2.0635,24,666,20.2,17.16,11700
|
||||
15.8603,0,18.1,0,0.679,5.896,95.4,1.9096,24,666,20.2,24.39,8300
|
||||
12.2472,0,18.1,0,0.584,5.837,59.7,1.9976,24,666,20.2,15.69,10200
|
||||
37.6619,0,18.1,0,0.679,6.202,78.7,1.8629,24,666,20.2,14.52,10900
|
||||
7.36711,0,18.1,0,0.679,6.193,78.1,1.9356,24,666,20.2,21.52,11000
|
||||
9.33889,0,18.1,0,0.679,6.38,95.6,1.9682,24,666,20.2,24.08,9500
|
||||
8.49213,0,18.1,0,0.584,6.348,86.1,2.0527,24,666,20.2,17.64,14500
|
||||
10.0623,0,18.1,0,0.584,6.833,94.3,2.0882,24,666,20.2,19.69,14100
|
||||
6.44405,0,18.1,0,0.584,6.425,74.8,2.2004,24,666,20.2,12.03,16100
|
||||
5.58107,0,18.1,0,0.713,6.436,87.9,2.3158,24,666,20.2,16.22,14300
|
||||
13.9134,0,18.1,0,0.713,6.208,95,2.2222,24,666,20.2,15.17,11700
|
||||
11.1604,0,18.1,0,0.74,6.629,94.6,2.1247,24,666,20.2,23.27,13400
|
||||
14.4208,0,18.1,0,0.74,6.461,93.3,2.0026,24,666,20.2,18.05,9600
|
||||
15.1772,0,18.1,0,0.74,6.152,100,1.9142,24,666,20.2,26.45,8700
|
||||
13.6781,0,18.1,0,0.74,5.935,87.9,1.8206,24,666,20.2,34.02,8400
|
||||
9.39063,0,18.1,0,0.74,5.627,93.9,1.8172,24,666,20.2,22.88,12800
|
||||
22.0511,0,18.1,0,0.74,5.818,92.4,1.8662,24,666,20.2,22.11,10500
|
||||
9.72418,0,18.1,0,0.74,6.406,97.2,2.0651,24,666,20.2,19.52,17100
|
||||
5.66637,0,18.1,0,0.74,6.219,100,2.0048,24,666,20.2,16.59,18400
|
||||
9.96654,0,18.1,0,0.74,6.485,100,1.9784,24,666,20.2,18.85,15400
|
||||
12.8023,0,18.1,0,0.74,5.854,96.6,1.8956,24,666,20.2,23.79,10800
|
||||
10.6718,0,18.1,0,0.74,6.459,94.8,1.9879,24,666,20.2,23.98,11800
|
||||
6.28807,0,18.1,0,0.74,6.341,96.4,2.072,24,666,20.2,17.79,14900
|
||||
9.92485,0,18.1,0,0.74,6.251,96.6,2.198,24,666,20.2,16.44,12600
|
||||
9.32909,0,18.1,0,0.713,6.185,98.7,2.2616,24,666,20.2,18.13,14100
|
||||
7.52601,0,18.1,0,0.713,6.417,98.3,2.185,24,666,20.2,19.31,13000
|
||||
6.71772,0,18.1,0,0.713,6.749,92.6,2.3236,24,666,20.2,17.44,13400
|
||||
5.44114,0,18.1,0,0.713,6.655,98.2,2.3552,24,666,20.2,17.73,15200
|
||||
5.09017,0,18.1,0,0.713,6.297,91.8,2.3682,24,666,20.2,17.27,16100
|
||||
8.24809,0,18.1,0,0.713,7.393,99.3,2.4527,24,666,20.2,16.74,17800
|
||||
9.51363,0,18.1,0,0.713,6.728,94.1,2.4961,24,666,20.2,18.71,14900
|
||||
4.75237,0,18.1,0,0.713,6.525,86.5,2.4358,24,666,20.2,18.13,14100
|
||||
4.66883,0,18.1,0,0.713,5.976,87.9,2.5806,24,666,20.2,19.01,12700
|
||||
8.20058,0,18.1,0,0.713,5.936,80.3,2.7792,24,666,20.2,16.94,13500
|
||||
7.75223,0,18.1,0,0.713,6.301,83.7,2.7831,24,666,20.2,16.23,14900
|
||||
6.80117,0,18.1,0,0.713,6.081,84.4,2.7175,24,666,20.2,14.7,20000
|
||||
4.81213,0,18.1,0,0.713,6.701,90,2.5975,24,666,20.2,16.42,16400
|
||||
3.69311,0,18.1,0,0.713,6.376,88.4,2.5671,24,666,20.2,14.65,17700
|
||||
6.65492,0,18.1,0,0.713,6.317,83,2.7344,24,666,20.2,13.99,19500
|
||||
5.82115,0,18.1,0,0.713,6.513,89.9,2.8016,24,666,20.2,10.29,20200
|
||||
7.83932,0,18.1,0,0.655,6.209,65.4,2.9634,24,666,20.2,13.22,21400
|
||||
3.1636,0,18.1,0,0.655,5.759,48.2,3.0665,24,666,20.2,14.13,19900
|
||||
3.77498,0,18.1,0,0.655,5.952,84.7,2.8715,24,666,20.2,17.15,19000
|
||||
4.42228,0,18.1,0,0.584,6.003,94.5,2.5403,24,666,20.2,21.32,19100
|
||||
15.5757,0,18.1,0,0.58,5.926,71,2.9084,24,666,20.2,18.13,19100
|
||||
13.0751,0,18.1,0,0.58,5.713,56.7,2.8237,24,666,20.2,14.76,20100
|
||||
4.34879,0,18.1,0,0.58,6.167,84,3.0334,24,666,20.2,16.29,19900
|
||||
4.03841,0,18.1,0,0.532,6.229,90.7,3.0993,24,666,20.2,12.87,19600
|
||||
3.56868,0,18.1,0,0.58,6.437,75,2.8965,24,666,20.2,14.36,23200
|
||||
4.64689,0,18.1,0,0.614,6.98,67.6,2.5329,24,666,20.2,11.66,29800
|
||||
8.05579,0,18.1,0,0.584,5.427,95.4,2.4298,24,666,20.2,18.14,13800
|
||||
6.39312,0,18.1,0,0.584,6.162,97.4,2.206,24,666,20.2,24.1,13300
|
||||
4.87141,0,18.1,0,0.614,6.484,93.6,2.3053,24,666,20.2,18.68,16700
|
||||
15.0234,0,18.1,0,0.614,5.304,97.3,2.1007,24,666,20.2,24.91,12000
|
||||
10.233,0,18.1,0,0.614,6.185,96.7,2.1705,24,666,20.2,18.03,14600
|
||||
14.3337,0,18.1,0,0.614,6.229,88,1.9512,24,666,20.2,13.11,21400
|
||||
5.82401,0,18.1,0,0.532,6.242,64.7,3.4242,24,666,20.2,10.74,23000
|
||||
5.70818,0,18.1,0,0.532,6.75,74.9,3.3317,24,666,20.2,7.74,23700
|
||||
5.73116,0,18.1,0,0.532,7.061,77,3.4106,24,666,20.2,7.01,25000
|
||||
2.81838,0,18.1,0,0.532,5.762,40.3,4.0983,24,666,20.2,10.42,21800
|
||||
2.37857,0,18.1,0,0.583,5.871,41.9,3.724,24,666,20.2,13.34,20600
|
||||
3.67367,0,18.1,0,0.583,6.312,51.9,3.9917,24,666,20.2,10.58,21200
|
||||
5.69175,0,18.1,0,0.583,6.114,79.8,3.5459,24,666,20.2,14.98,19100
|
||||
4.83567,0,18.1,0,0.583,5.905,53.2,3.1523,24,666,20.2,11.45,20600
|
||||
0.15086,0,27.74,0,0.609,5.454,92.7,1.8209,4,711,20.1,18.06,15200
|
||||
0.18337,0,27.74,0,0.609,5.414,98.3,1.7554,4,711,20.1,23.97,7000
|
||||
0.20746,0,27.74,0,0.609,5.093,98,1.8226,4,711,20.1,29.68,8100
|
||||
0.10574,0,27.74,0,0.609,5.983,98.8,1.8681,4,711,20.1,18.07,13600
|
||||
0.11132,0,27.74,0,0.609,5.983,83.5,2.1099,4,711,20.1,13.35,20100
|
||||
0.17331,0,9.69,0,0.585,5.707,54,2.3817,6,391,19.2,12.01,21800
|
||||
0.27957,0,9.69,0,0.585,5.926,42.6,2.3817,6,391,19.2,13.59,24500
|
||||
0.17899,0,9.69,0,0.585,5.67,28.8,2.7986,6,391,19.2,17.6,23100
|
||||
0.2896,0,9.69,0,0.585,5.39,72.9,2.7986,6,391,19.2,21.14,19700
|
||||
0.26838,0,9.69,0,0.585,5.794,70.6,2.8927,6,391,19.2,14.1,18300
|
||||
0.23912,0,9.69,0,0.585,6.019,65.3,2.4091,6,391,19.2,12.92,21200
|
||||
0.17783,0,9.69,0,0.585,5.569,73.5,2.3999,6,391,19.2,15.1,17500
|
||||
0.22438,0,9.69,0,0.585,6.027,79.7,2.4982,6,391,19.2,14.33,16800
|
||||
0.06263,0,11.93,0,0.573,6.593,69.1,2.4786,1,273,21,9.67,22400
|
||||
0.04527,0,11.93,0,0.573,6.12,76.7,2.2875,1,273,21,9.08,20600
|
||||
0.06076,0,11.93,0,0.573,6.976,91,2.1675,1,273,21,5.64,23900
|
||||
0.10959,0,11.93,0,0.573,6.794,89.3,2.3889,1,273,21,6.48,22000
|
||||
0.04741,0,11.93,0,0.573,6.03,80.8,2.505,1,273,21,7.88,11900
|
|
15000
商务大数据分析/20250430/data/hr.csv
Executable file
15000
商务大数据分析/20250430/data/hr.csv
Executable file
File diff suppressed because it is too large
Load Diff
BIN
商务大数据分析/20250430/data/student_grade.xlsx
Executable file
BIN
商务大数据分析/20250430/data/student_grade.xlsx
Executable file
Binary file not shown.
100
商务大数据分析/20250430/data/worldcloud.csv
Executable file
100
商务大数据分析/20250430/data/worldcloud.csv
Executable file
@ -0,0 +1,100 @@
|
||||
词语,频数
|
||||
东风,1379
|
||||
何处,1231
|
||||
人间,1164
|
||||
风流,843
|
||||
归去,818
|
||||
春风,800
|
||||
西风,782
|
||||
归来,768
|
||||
江南,760
|
||||
相思,759
|
||||
梅花,725
|
||||
千里,668
|
||||
多少,653
|
||||
回首,649
|
||||
如今,647
|
||||
明月,646
|
||||
阑干,632
|
||||
年年,605
|
||||
万里,587
|
||||
一笑,579
|
||||
黄昏,561
|
||||
当年,537
|
||||
芳草,533
|
||||
天涯,531
|
||||
相逢,523
|
||||
尊前,519
|
||||
一枝,510
|
||||
风雨,500
|
||||
流水,481
|
||||
风吹,474
|
||||
依旧,469
|
||||
多情,458
|
||||
风月,452
|
||||
当时,451
|
||||
故人,445
|
||||
斜阳,444
|
||||
无人,443
|
||||
不知,426
|
||||
深处,424
|
||||
不见,416
|
||||
时节,407
|
||||
凄凉,404
|
||||
平生,394
|
||||
春色,393
|
||||
无限,381
|
||||
一点,374
|
||||
功名,366
|
||||
杨柳,363
|
||||
天上,361
|
||||
匆匆,357
|
||||
芙蓉,356
|
||||
今日,354
|
||||
扁舟,351
|
||||
西湖,350
|
||||
憔悴,349
|
||||
消息,347
|
||||
桃花,343
|
||||
何事,335
|
||||
一片,333
|
||||
神仙,332
|
||||
一声,331
|
||||
黄花,330
|
||||
心事,330
|
||||
鸳鸯,328
|
||||
十分,327
|
||||
人生,324
|
||||
断肠,323
|
||||
佳人,323
|
||||
长安,321
|
||||
东君,319
|
||||
桃李,319
|
||||
而今,318
|
||||
为谁,317
|
||||
无情,307
|
||||
去年,306
|
||||
天气,306
|
||||
不是,305
|
||||
海棠,305
|
||||
少年,305
|
||||
今夜,304
|
||||
不似,303
|
||||
十年,303
|
||||
行人,300
|
||||
谁知,300
|
||||
寂寞,299
|
||||
肠断,297
|
||||
江上,297
|
||||
悠悠,297
|
||||
富贵,295
|
||||
时候,295
|
||||
昨夜,295
|
||||
几度,292
|
||||
月明,292
|
||||
何时,291
|
||||
青山,291
|
||||
蓬莱,290
|
||||
往事,290
|
||||
如何,287
|
||||
惟有,287
|
|
8979
商务大数据分析/20250430/data/商品销售数据.csv
Executable file
8979
商务大数据分析/20250430/data/商品销售数据.csv
Executable file
File diff suppressed because it is too large
Load Diff
BIN
商务大数据分析/20250430/data/某淘宝店铺的订单转化率统计数据.xlsx
Executable file
BIN
商务大数据分析/20250430/data/某淘宝店铺的订单转化率统计数据.xlsx
Executable file
Binary file not shown.
BIN
商务大数据分析/20250430/data/运动员的最大携氧能力、体重和运动后心率数据.xlsx
Executable file
BIN
商务大数据分析/20250430/data/运动员的最大携氧能力、体重和运动后心率数据.xlsx
Executable file
Binary file not shown.
336
商务大数据分析/20250430/task.ipynb
Normal file
336
商务大数据分析/20250430/task.ipynb
Normal file
File diff suppressed because one or more lines are too long
2057
商务大数据分析/20250430/task2.ipynb
Normal file
2057
商务大数据分析/20250430/task2.ipynb
Normal file
File diff suppressed because one or more lines are too long
11
商务大数据分析/20250430/test
Normal file
11
商务大数据分析/20250430/test
Normal file
@ -0,0 +1,11 @@
|
||||
# 创建一个新的图形窗口,设置图形大小为宽 10 英寸,高 8 英寸
|
||||
plt.figure(figsize=(10, 8))
|
||||
# 使用 seaborn 库的 heatmap 函数绘制热力图
|
||||
# data 参数传入之前计算得到的相关系数矩阵 correlation_matrix
|
||||
# annot=True 表示在热力图上显示具体的相关系数数值
|
||||
# cmap='coolwarm' 指定使用的颜色映射,这里使用冷暖色调
|
||||
sns.heatmap(data=correlation_matrix, annot=True, cmap='coolwarm')
|
||||
# 设置图形的标题为 '空气质量特征相关性热力图',并使用之前设置的中文字体
|
||||
plt.title('空气质量特征相关性热力图', fontproperties=my_font)
|
||||
# 显示绘制好的图形
|
||||
plt.show()
|
BIN
商务大数据分析/20250430/tmp/sincos(x).jpg
Executable file
BIN
商务大数据分析/20250430/tmp/sincos(x).jpg
Executable file
Binary file not shown.
After Width: | Height: | Size: 27 KiB |
BIN
商务大数据分析/20250430/tmp/sincos.jpg
Executable file
BIN
商务大数据分析/20250430/tmp/sincos.jpg
Executable file
Binary file not shown.
After Width: | Height: | Size: 51 KiB |
BIN
商务大数据分析/20250430/tmp/y=x^2.jpg
Executable file
BIN
商务大数据分析/20250430/tmp/y=x^2.jpg
Executable file
Binary file not shown.
After Width: | Height: | Size: 19 KiB |
BIN
商务大数据分析/20250430/tmp/某企业季度销售额对比展示.jpg
Executable file
BIN
商务大数据分析/20250430/tmp/某企业季度销售额对比展示.jpg
Executable file
Binary file not shown.
After Width: | Height: | Size: 55 KiB |
BIN
商务大数据分析/20250430/tmp/某企业季度销售额对比展示1.jpg
Executable file
BIN
商务大数据分析/20250430/tmp/某企业季度销售额对比展示1.jpg
Executable file
Binary file not shown.
After Width: | Height: | Size: 58 KiB |
BIN
商务大数据分析/20250430/tmp/超星平台AI分析:学生图表制作常见问题 vs 专业解决方案.jpg
Executable file
BIN
商务大数据分析/20250430/tmp/超星平台AI分析:学生图表制作常见问题 vs 专业解决方案.jpg
Executable file
Binary file not shown.
After Width: | Height: | Size: 106 KiB |
199
商务大数据分析/20250430/任务5.1 掌握Matplotlib基础绘图.py
Normal file
199
商务大数据分析/20250430/任务5.1 掌握Matplotlib基础绘图.py
Normal file
@ -0,0 +1,199 @@
|
||||
# 代码5-1
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
import warnings
|
||||
# 忽略所有警告
|
||||
warnings.filterwarnings("ignore")
|
||||
# %matplotlib inline表示在行中显示图片,在命令行运行报错
|
||||
data = np.arange(0, 1.1, 0.01)
|
||||
plt.title('lines') # 添加标题
|
||||
plt.xlabel('x') # 添加x轴的名称
|
||||
plt.ylabel('y') # 添加y轴的名称
|
||||
plt.xlim((0, 1)) # 确定x轴范围
|
||||
plt.ylim((0, 1)) # 确定y轴范围
|
||||
plt.xticks([0, 0.2, 0.4, 0.6, 0.8, 1]) # 规定x轴刻度
|
||||
plt.yticks([0, 0.2, 0.4, 0.6, 0.8, 1]) # 确定y轴刻度
|
||||
plt.plot(data, data ** 2) # 添加y=x^2曲线
|
||||
plt.plot(data, data ** 4) # 添加y=x^4曲线
|
||||
plt.legend(['y=x^2', 'y=x^4'])
|
||||
plt.savefig('../tmp/y=x^2.jpg')
|
||||
plt.show()
|
||||
|
||||
|
||||
# 代码5-2
|
||||
x = np.arange(0, np.pi * 2, 0.01)
|
||||
# 第一幅子图
|
||||
p1 = plt.figure(figsize=(8, 6), dpi=80) # 确定画布大小
|
||||
# 创建一个2行1列的子图,并开始绘制第一幅
|
||||
ax1 = p1.add_subplot(2, 1, 1)
|
||||
plt.title('lines') # 添加标题
|
||||
plt.xlabel('x') # 添加x轴的名称
|
||||
plt.ylabel('y') # 添加y轴的名称
|
||||
plt.xlim((0, 1)) # 确定x轴范围
|
||||
plt.ylim((0, 1)) # 确定y轴范围
|
||||
plt.xticks([0, 0.2, 0.4, 0.6, 0.8, 1]) # 规定x轴刻度
|
||||
plt.yticks([0, 0.2, 0.4, 0.6, 0.8, 1]) # 确定y轴刻度
|
||||
plt.plot(x, x ** 2) # 添加y=x^2曲线
|
||||
plt.plot(x, x ** 4) # 添加y=x^4曲线
|
||||
plt.legend(['y=x^2', 'y=x^4'])
|
||||
# 第二幅子图
|
||||
ax2 = p1.add_subplot(2, 1, 2) # 开始绘制第二幅
|
||||
plt.title('sin/cos(x)') # 添加标题
|
||||
plt.xlabel('x') # 添加x轴的名称
|
||||
plt.ylabel('y') # 添加y轴的名称
|
||||
plt.xlim((0, np.pi * 2)) # 确定x轴范围
|
||||
plt.ylim((-1, 1)) # 确定y轴范围
|
||||
plt.xticks([0, np.pi / 2, np.pi, np.pi * 1.5, np.pi * 2]) # 规定x轴刻度
|
||||
plt.yticks([-1, -0.5, 0, 0.5, 1]) # 确定y轴刻度
|
||||
plt.plot(x, np.sin(x)) # 添加sin(x)曲线
|
||||
plt.plot(x, np.cos(x)) # 添加cos(x)曲线
|
||||
plt.legend(['y=sin(x)', 'y=cos(x)'])
|
||||
plt.tight_layout() # 调整两个子图间距
|
||||
plt.savefig('../tmp/sincos(x).jpg')
|
||||
plt.show()
|
||||
|
||||
|
||||
# 代码5-3
|
||||
# 原图
|
||||
x = np.linspace(0, 4 * np.pi) # 生成x轴数据
|
||||
y = np.sin(x) # 生成y轴数据
|
||||
plt.plot(x, y, label='$sin(x)$') # 绘制sin曲线图
|
||||
plt.title('sin(x)')
|
||||
plt.xlabel('x')
|
||||
plt.ylabel('y')
|
||||
plt.show()
|
||||
|
||||
# 修改rc参数后的图
|
||||
plt.rcParams['lines.linestyle'] = '-.'
|
||||
plt.rcParams['lines.linewidth'] = 3
|
||||
plt.plot(x, y, label='$sin(x)$') # 绘制三角函数
|
||||
plt.title('sin(x)')
|
||||
plt.xlabel('x')
|
||||
plt.ylabel('y')
|
||||
plt.show()
|
||||
|
||||
|
||||
# 代码5-4
|
||||
# 无法显示中文标题
|
||||
plt.plot(x, y, label='$sin(x)$') # 绘制三角函数
|
||||
plt.title('sin(x)曲线')
|
||||
plt.xlabel('x')
|
||||
plt.ylabel('y')
|
||||
plt.show()
|
||||
|
||||
# 设置rc参数显示中文标题
|
||||
# 设置字体为SimHei显示中文
|
||||
plt.rcParams['font.sans-serif'] = 'SimHei'
|
||||
plt.rcParams['axes.unicode_minus'] = False # 设置正常显示符号
|
||||
plt.plot(x, y, label='$sin(x)$') # 绘制三角函数
|
||||
plt.title('sin(x)曲线')
|
||||
plt.xlabel('x')
|
||||
plt.ylabel('y')
|
||||
plt.show()
|
||||
|
||||
|
||||
# 代码5-5
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
plt.rcParams['font.sans-serif'] = 'SimHei' # 设置中文显示
|
||||
plt.rcParams['axes.unicode_minus'] = False
|
||||
data = np.load('../data/2001-2019年劳动力与就业人员数据.npz',
|
||||
encoding='ASCII', allow_pickle=True)
|
||||
columns = data['arr_0'] # 提取其中的columns数组,视为数据的标签
|
||||
values = data['arr_1'] # 提取其中的values数组,视为数据的存在位置
|
||||
plt.figure(figsize=(12, 6), dpi=1080) # 设置画布
|
||||
plt.scatter(values[:, 0], values[:, 1], marker='o') # 绘制散点图
|
||||
plt.xlabel('年份(年)')
|
||||
plt.ylabel('劳动力人数(万人)')
|
||||
plt.ylim(70000, 85000) # 设置y轴范围
|
||||
plt.xticks(range(2001, 2020, 1), labels=values[:, 0])
|
||||
plt.title('2001~2019年劳动力人数散点图') # 添加图表标题
|
||||
plt.show()
|
||||
|
||||
|
||||
# 代码5-6
|
||||
p = plt.figure(figsize=(12, 6), dpi=1080) # 设置画布
|
||||
# 绘制散点图1
|
||||
plt.scatter(values[:, 0], values[:, 3], marker='o', c='b')
|
||||
# 绘制散点图2
|
||||
plt.scatter(values[:, 0], values[:, 4], marker='o', c='r')
|
||||
plt.xlabel('年份(年)')
|
||||
plt.ylabel('人数(万人)')
|
||||
plt.ylim(20000, 60000) # 设置y轴范围
|
||||
plt.xticks(range(2001, 2020, 1), labels=values[:, 0])
|
||||
plt.legend(['城镇就业人员', '乡村就业人员']) # 设置图例
|
||||
plt.title('2001~2019年城乡就业人数散点图') # 添加图表标题
|
||||
plt.show()
|
||||
|
||||
|
||||
|
||||
# 代码5-7
|
||||
p = plt.figure(figsize=(12, 6), dpi=1080) #设置画布
|
||||
plt.plot(values[:, 0], values[:, 2], color='r', linestyle='-')
|
||||
plt.xlabel('年份(年)')
|
||||
plt.ylabel('人数(万人)')
|
||||
plt.ylim(70000, 80000) # 设置y轴范围
|
||||
plt.xticks(range(2001, 2020, 1), labels=values[:, 0])
|
||||
plt.title('2001~2019年就业人数折线图')
|
||||
plt.show()
|
||||
|
||||
|
||||
# 代码5-8
|
||||
p = plt.figure(figsize=(12, 6), dpi=1080) #设置画布
|
||||
plt.plot(values[:, 0], values[:, 2], c='b', linestyle = '-',
|
||||
marker = 'o') # 绘制点线图
|
||||
plt.xlabel('年份(年)')
|
||||
plt.ylabel('人数(万人)')
|
||||
plt.ylim(70000, 80000) # 设置y轴范围
|
||||
plt.xticks(range(2001, 2020, 1), labels=values[:, 0])
|
||||
plt.title('2001~2019年就业人数点线图')
|
||||
plt.show()
|
||||
|
||||
|
||||
|
||||
# 代码5-9
|
||||
p = plt.figure(figsize=(12, 6), dpi=1080) #设置画布
|
||||
plt.plot(values[:, 0], values[:, 3], 'bs-',
|
||||
values[:, 0], values[:, 4], 'ro-.')
|
||||
plt.xlabel('年份(年)')
|
||||
plt.ylabel('人数(万人)')
|
||||
plt.ylim(20000, 60000) # 设置y轴范围
|
||||
plt.xticks(range(2001, 2020, 1), labels=values[:, 0])
|
||||
plt.legend(['城镇就业人员', '乡村就业人员'])
|
||||
plt.title('2001~2019年城乡就业人数点线图')
|
||||
plt.show()
|
||||
|
||||
|
||||
# 代码5-10
|
||||
columns = data['arr_0'] # 提取其中的columns数组,视为数据的标签
|
||||
values = data['arr_1'] # 提取其中的values数组,视为数据的存在位置
|
||||
# 绘制柱形图
|
||||
labels = ['城镇就业人员', '乡村就业人员']
|
||||
p = plt.figure(figsize=(6, 6), dpi=1080)
|
||||
plt.bar(range(2), values[-1, 3:5], width=0.5)
|
||||
plt.xlabel('类别')
|
||||
plt.ylabel('就业人数(万人)')
|
||||
plt.xticks(range(2), labels)
|
||||
plt.title('2019年城乡就业人数柱形图')
|
||||
plt.show()
|
||||
|
||||
|
||||
|
||||
# 代码5-11
|
||||
label = ['城镇就业人员', '乡村就业人员']
|
||||
explode = [0.01, 0.01] # 设定各项距离圆心n个半径
|
||||
p = plt.figure(figsize=(6, 6), dpi=1080) # 设置画布
|
||||
plt.pie(values[-1, 3:5], explode=explode,
|
||||
labels=label, autopct='%1.1f%%')
|
||||
plt.title('2019年城乡就业人数分布饼图')
|
||||
plt.show()
|
||||
|
||||
|
||||
|
||||
# 代码5-12
|
||||
label= ['城镇就业人员', '乡村就业人员']
|
||||
gdp = (list(values[:, 3]),list(values[:, 4]))
|
||||
p = plt.figure(figsize=(6, 6), dpi=1080)
|
||||
plt.boxplot(gdp, notch=True, labels=label, meanline=True)
|
||||
plt.title('2001~2019年城乡就业人数分布箱线图')
|
||||
plt.show()
|
365
商务大数据分析/20250430/任务5.2 掌握seaborn基础绘图.py
Executable file
365
商务大数据分析/20250430/任务5.2 掌握seaborn基础绘图.py
Executable file
@ -0,0 +1,365 @@
|
||||
# 代码5-13
|
||||
# 导库
|
||||
from matplotlib import pyplot as plt
|
||||
import pandas as pd
|
||||
import seaborn as sns
|
||||
import warnings
|
||||
# 忽略所有警告
|
||||
warnings.filterwarnings("ignore")
|
||||
# 设置中文字体
|
||||
plt.rcParams['font.sans-serif'] = ['SimHei']
|
||||
sns.set_style({'font.sans-serif':['simhei', 'Arial']})
|
||||
|
||||
# 加载数据
|
||||
hr = pd.read_csv('../data/hr.csv', encoding='gbk')
|
||||
|
||||
data = hr.head(100)
|
||||
# 使用Matplotlib库绘图
|
||||
color_map = dict(zip(data['薪资'].unique(), ['b', 'y', 'r']))
|
||||
for species, group in data.groupby('薪资'):
|
||||
plt.scatter(group['每月平均工作小时数(小时)'],
|
||||
group['满意度'],
|
||||
color=color_map[species], alpha=0.4,
|
||||
edgecolors=None, label=species)
|
||||
plt.legend(frameon=True, title='薪资')
|
||||
plt.xlabel('平均每个月工作时长(小时)')
|
||||
plt.ylabel('满意度水平')
|
||||
plt.title('满意度水平与平均每个月工作小时')
|
||||
plt.show()
|
||||
|
||||
# 使用seaborn库绘图
|
||||
sns.lmplot('每月平均工作小时数(小时)', '满意度', data, hue='薪资', fit_reg=False, height=4)
|
||||
plt.xlabel('平均每个月工作时长(小时)')
|
||||
plt.ylabel('满意度水平')
|
||||
plt.title('满意度水平与平均每个月工作小时')
|
||||
plt.show()
|
||||
|
||||
|
||||
|
||||
# 代码5-14
|
||||
import numpy as np
|
||||
plt.rcParams['axes.unicode_minus'] = False
|
||||
x = np.arange(1, 10, 2)
|
||||
y1 = x + 1
|
||||
y2 = x + 3
|
||||
y3 = x + 5
|
||||
# 绘制3条不同的直线
|
||||
# 使用Matplotlib库绘图
|
||||
plt.title('Matplotlib库的绘图风格')
|
||||
plt.plot(x, y1)
|
||||
plt.plot(x, y2)
|
||||
plt.plot(x, y3)
|
||||
plt.show()
|
||||
|
||||
# 使用seaborn库绘图
|
||||
# 第1部分
|
||||
sns.set_style('darkgrid') # 全黑风格
|
||||
sns.set_style({'font.sans-serif':['simhei', 'Arial']})
|
||||
plt.title('seaborn库的绘图风格')
|
||||
# 第2部分
|
||||
sns.lineplot(x, y1)
|
||||
sns.lineplot(x, y2)
|
||||
sns.lineplot(x, y3)
|
||||
plt.show()
|
||||
|
||||
|
||||
|
||||
# 代码5-15
|
||||
x = np.arange(1, 10, 2)
|
||||
y1 = x + 1
|
||||
y2 = x + 3
|
||||
y3 = x + 5
|
||||
def showLine(flip=1):
|
||||
sns.lineplot(x, y1)
|
||||
sns.lineplot(x, y2)
|
||||
sns.lineplot(x, y3)
|
||||
pic = plt.figure(figsize=(12, 8))
|
||||
with sns.axes_style('darkgrid'): # 使用darkgrid主题
|
||||
pic.add_subplot(2, 3, 1)
|
||||
showLine()
|
||||
plt.title('darkgrid')
|
||||
with sns.axes_style('whitegrid'): # 使用whitegrid主题
|
||||
pic.add_subplot(2, 3, 2)
|
||||
showLine()
|
||||
plt.title('whitegrid')
|
||||
with sns.axes_style('dark'): # 使用dark主题
|
||||
pic.add_subplot(2, 3, 3)
|
||||
showLine()
|
||||
plt.title('dark')
|
||||
with sns.axes_style('white'): # 使用white主题
|
||||
pic.add_subplot(2, 3, 4)
|
||||
showLine()
|
||||
plt.title('white')
|
||||
with sns.axes_style('ticks'): # 使用ticks主题
|
||||
pic.add_subplot(2, 3, 5)
|
||||
showLine()
|
||||
plt.title('ticks')
|
||||
sns.set_style(style='darkgrid', rc={'font.sans-serif': ['MicrosoftYaHei', 'SimHei'],
|
||||
'grid.color': 'black'}) # 修改主题中参数
|
||||
pic.add_subplot(2, 3, 6)
|
||||
showLine()
|
||||
plt.title('修改参数')
|
||||
plt.show()
|
||||
|
||||
|
||||
|
||||
# 代码5-16
|
||||
sns.set()
|
||||
x = np.arange(1, 10, 2)
|
||||
y1 = x + 1
|
||||
y2 = x + 3
|
||||
y3 = x + 5
|
||||
def showLine(flip=1):
|
||||
sns.lineplot(x, y1)
|
||||
sns.lineplot(x, y2)
|
||||
sns.lineplot(x, y3)
|
||||
# 恢复默认参数
|
||||
pic = plt.figure(figsize=(8, 8), dpi=100)
|
||||
with sns.plotting_context('paper'): # 选择paper类型
|
||||
pic.add_subplot(2, 2, 1)
|
||||
showLine()
|
||||
plt.title('paper')
|
||||
with sns.plotting_context('notebook'): # 选择notebook类型
|
||||
pic.add_subplot(2, 2, 2)
|
||||
showLine()
|
||||
plt.title('notebook')
|
||||
with sns.plotting_context('talk'): # 选择talk类型
|
||||
pic.add_subplot(2, 2, 3)
|
||||
showLine()
|
||||
plt.title('talk')
|
||||
with sns.plotting_context('poster'): # 选择poster类型
|
||||
pic.add_subplot(2, 2, 4)
|
||||
showLine()
|
||||
plt.title('poster')
|
||||
plt.show()
|
||||
|
||||
|
||||
|
||||
# 代码5-17
|
||||
with sns.axes_style('white'):
|
||||
showLine()
|
||||
sns.despine() # 默认无参数状态,就是删除上方和右方的边框
|
||||
plt.title('控制图形边框')
|
||||
plt.show()
|
||||
|
||||
|
||||
with sns.axes_style('white'):
|
||||
data = np.random.normal(size=(20, 6)) + np.arange(6) / 2
|
||||
sns.boxplot(data=data)
|
||||
sns.despine(offset=10, left=False, bottom=False)
|
||||
plt.title('控制图形边框')
|
||||
plt.show()
|
||||
|
||||
|
||||
|
||||
|
||||
# 代码5-18
|
||||
sns.palplot(sns.color_palette())
|
||||
|
||||
|
||||
|
||||
# 代码5-19
|
||||
palette = sns.color_palette('muted')
|
||||
sns.palplot(palette)
|
||||
|
||||
|
||||
|
||||
# 代码5-20
|
||||
sns.palplot(sns.color_palette('hls', 8))
|
||||
|
||||
|
||||
|
||||
# 代码5-21
|
||||
sns.palplot(sns.hls_palette(8, l=.3, s=.8)) # l控制亮度,s控制饱和度
|
||||
|
||||
|
||||
#代码5-22
|
||||
sns.palplot(sns.color_palette('husl', 8))
|
||||
|
||||
|
||||
|
||||
# 代码5-23
|
||||
plt.plot(x, y1, sns.xkcd_rgb['pale red'], lw=3)
|
||||
plt.plot(x, y2, sns.xkcd_rgb['medium green'], lw=3)
|
||||
plt.plot(x, y3, sns.xkcd_rgb['denim blue'], lw=3)
|
||||
plt.title('线条颜色示例')
|
||||
plt.show()
|
||||
|
||||
# 自定义定性调色板
|
||||
colors = ['windows blue', 'amber', 'greyish', 'faded green', 'dusty purple']
|
||||
sns.palplot(sns.xkcd_palette(colors))
|
||||
|
||||
|
||||
|
||||
# 代码5-24
|
||||
sns.palplot(sns.color_palette('Greens'))
|
||||
sns.palplot(sns.color_palette('YlOrRd_r'))
|
||||
sns.palplot(sns.color_palette('YlOrRd_d'))
|
||||
|
||||
|
||||
|
||||
# 代码5-25
|
||||
sns.palplot(sns.cubehelix_palette(8, start=1, rot=0))
|
||||
|
||||
x, y = np.random.multivariate_normal([0, 0], [[1, -.5], [-.5, 1]], size=300).T
|
||||
cmap = sns.cubehelix_palette(as_cmap=True) # 生产调色板对象
|
||||
sns.kdeplot(x, y, cmap=cmap, shade=True)
|
||||
plt.title('连续调色板')
|
||||
plt.show()
|
||||
|
||||
|
||||
|
||||
# 代码5-26
|
||||
sns.palplot(sns.light_palette('blue'))
|
||||
sns.palplot(sns.dark_palette('yellow'))
|
||||
# 使用husl颜色空间作为种子
|
||||
pal = sns.dark_palette((200, 80, 60), input='husl', reverse=True, as_cmap=True)
|
||||
sns.kdeplot(x, y, cmap=pal)
|
||||
plt.title('自定义连续调色板')
|
||||
plt.show()
|
||||
|
||||
|
||||
|
||||
# 代码5-27
|
||||
sns.palplot(sns.color_palette('BrBG', 7))
|
||||
sns.palplot(sns.color_palette('RdBu_r', 7))
|
||||
|
||||
|
||||
|
||||
# 代码5-28
|
||||
sns.palplot(sns.color_palette('coolwarm', 7))
|
||||
|
||||
|
||||
|
||||
# 代码5-29
|
||||
sns.palplot(sns.diverging_palette(240, 10, n=7))
|
||||
sns.palplot(sns.diverging_palette(150, 275, s=80, l=55, n=7))
|
||||
# 创建中间是暗色的调色板
|
||||
sns.palplot(sns.diverging_palette(250, 15, s=75, l=40, n=7, center='dark'))
|
||||
# 通过sep参数控制中间区域渐变宽度
|
||||
sns.palplot(sns.diverging_palette(150, 275, s=80, l=55, n=7, sep=80))
|
||||
|
||||
|
||||
|
||||
# 代码5-30
|
||||
x = np.arange(1, 10, 2)
|
||||
y1 = x + 1
|
||||
y2 = x + 3
|
||||
y3 = x + 5
|
||||
def showLine(flip=1):
|
||||
sns.lineplot(x, y1)
|
||||
sns.lineplot(x, y2)
|
||||
sns.lineplot(x, y3)
|
||||
# 使用默认调色板
|
||||
showLine()
|
||||
plt.title('默认调色板')
|
||||
plt.show()
|
||||
|
||||
# sns.set_palette函数设置调色板
|
||||
sns.set_palette('YlOrRd_d')
|
||||
showLine()
|
||||
plt.title('使用set_palette设置调色板')
|
||||
plt.show()
|
||||
|
||||
sns.set() # 恢复所有默认设置
|
||||
plt.rcParams['font.sans-serif'] = ['SimHei']
|
||||
plt.rcParams['axes.unicode_minus'] = False
|
||||
pic = plt.figure(figsize=(8, 4))
|
||||
with sns.color_palette('PuBuGn_d'): # 临时配置调色板
|
||||
pic.add_subplot(1, 2, 1)
|
||||
showLine()
|
||||
plt.title('使用color_palette设置调色板')
|
||||
pic.add_subplot(1, 2, 2) # 使用默认调色板
|
||||
showLine()
|
||||
plt.title('默认调色板')
|
||||
plt.show()
|
||||
|
||||
|
||||
# 代码5-31
|
||||
boston = pd.read_csv('../data/boston_house_prices.csv', encoding='gbk')
|
||||
plt.rcParams['axes.unicode_minus'] = False
|
||||
corr = boston.corr() # 特征的相关系数矩阵
|
||||
sns.heatmap(corr)
|
||||
plt.title('特征矩阵热力图')
|
||||
plt.show()
|
||||
|
||||
|
||||
# 代码5-32
|
||||
plt.figure(figsize=(10, 10))
|
||||
sns.heatmap(corr, annot=True, fmt='.2f')
|
||||
plt.title('特征矩阵热力图')
|
||||
plt.show()
|
||||
|
||||
|
||||
# 代码5-33
|
||||
# 提取部门为销售部、离职为1的数据
|
||||
sale = hr.iloc[(hr['部门'].values=='销售部') & (hr['离职'].values==1), :]
|
||||
sns.stripplot(x=sale['每月平均工作小时数(小时)'])
|
||||
plt.title('简单水平分布散点图')
|
||||
plt.show()
|
||||
|
||||
|
||||
# 代码5-34
|
||||
# 提取离职为1的数据
|
||||
hr1 = hr.iloc[hr['离职'].values==1, :]
|
||||
plt.figure(figsize=(10, 5))
|
||||
plt.subplot(121)
|
||||
plt.xticks(rotation=70)
|
||||
sns.stripplot(x='部门', y='每月平均工作小时数(小时)', data=hr1) # 默认添加随机噪声
|
||||
plt.title('默认随机噪声抖动')
|
||||
plt.subplot(122)
|
||||
plt.xticks(rotation=70)
|
||||
sns.stripplot(x='部门', y='每月平均工作小时数(小时)',
|
||||
data=hr1, jitter=False) # 不添加随机噪声
|
||||
plt.title('无随机噪声抖动')
|
||||
plt.show()
|
||||
|
||||
|
||||
|
||||
# 代码5-35
|
||||
# 提取高薪在职的数据
|
||||
hr2 = hr.iloc[(hr['薪资'].values=='高') & (hr['离职'].values==0), :]
|
||||
sns.stripplot(x='5年内升职', y='每月平均工作小时数(小时)',
|
||||
hue='部门', data=hr2, jitter=True)
|
||||
plt.title('前5年是否晋升与平均每月工作时长')
|
||||
plt.show()
|
||||
|
||||
|
||||
|
||||
# 代码5-36
|
||||
plt.figure(figsize=(10, 13))
|
||||
plt.subplot(211)
|
||||
plt.xticks(rotation=70)
|
||||
plt.title('不同部门的平均每月工作时长')
|
||||
sns.stripplot(x='部门', y='每月平均工作小时数(小时)', hue='5年内升职', data=hr2)
|
||||
plt.subplot(212)
|
||||
plt.xticks(rotation=70)
|
||||
sns.stripplot(x='部门', y='每月平均工作小时数(小时)', hue='5年内升职',
|
||||
data=hr2, dodge=True)
|
||||
plt.show()
|
||||
|
||||
|
||||
|
||||
# 代码5-37
|
||||
sns.swarmplot(x='部门', y='每月平均工作小时数(小时)', data=hr2)
|
||||
plt.xticks(rotation=70)
|
||||
plt.title('不同部门的平均每月工作时长')
|
||||
plt.show()
|
||||
|
||||
|
||||
|
||||
# 代码5-38
|
||||
sns.swarmplot(x='部门', y='每月平均工作小时数(小时)',
|
||||
hue='5年内升职', data=hr2)
|
||||
plt.xticks(rotation=30)
|
||||
plt.title('不同部门的平均每月工作时长')
|
||||
plt.show()
|
||||
|
||||
|
||||
# 代码5-39
|
||||
fig, axes = plt.subplots(1, 2, figsize=(8, 4))
|
||||
axes[0].set_title('修改前的线性回归拟合图')
|
||||
axes[1].set_title('修改后的线性回归拟合图')
|
||||
sns.regplot(x='房间数(间)', y='房屋价格(美元)', data=boston, ax=axes[0])
|
||||
sns.regplot(x='房间数(间)', y='房屋价格(美元)', data=boston, ci=50, ax=axes[1])
|
||||
plt.show()
|
28
数据可视化技术/test.py
Normal file
28
数据可视化技术/test.py
Normal file
@ -0,0 +1,28 @@
|
||||
import time
|
||||
from flask import Flask
|
||||
import redis
|
||||
|
||||
app = Flask(__name__)
|
||||
|
||||
# 使用服务名 "redis" 作为 host,docker-compose 会自动识别
|
||||
def get_redis_client():
|
||||
return redis.Redis(host='hadoop102', port=6379)
|
||||
|
||||
def get_hit_count():
|
||||
retries = 5
|
||||
while True:
|
||||
try:
|
||||
return get_redis_client().incr('hits')
|
||||
except redis.exceptions.ConnectionError as exc:
|
||||
if retries == 0:
|
||||
raise exc
|
||||
retries -= 1
|
||||
time.sleep(0.5)
|
||||
|
||||
@app.route('/')
|
||||
def hello():
|
||||
count = get_hit_count()
|
||||
return f'Hello World! I have been seen {count} times.\n'
|
||||
|
||||
if __name__ == '__main__':
|
||||
app.run(debug=True)
|
Loading…
x
Reference in New Issue
Block a user