937 lines
26 KiB
Plaintext
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{
"cells": [
{
"metadata": {},
"cell_type": "markdown",
"source": [
"请读取二手车数据源完成以下需求在notebook中运行代码将完整运行结果导出为pdf上传。\n",
"\n",
"1、车辆价格分布情况\n",
"\n",
"2、车辆销量品牌分布\n",
"\n",
"3、排放标准分析\n",
"\n",
"4、车龄分析\n",
"\n",
"5、里程分析\n",
"\n",
"6、折旧价格分析\n",
"\n",
"7、不同品牌新车平均价格对比\n",
"\n",
"8、排放标准与行驶里程的关系\n",
"\n",
"9、车龄与二手车价格的相关性"
],
"id": "2ce470d74c7f8f38"
},
{
"metadata": {
"ExecuteTime": {
"end_time": "2025-04-23T06:44:52.013294Z",
"start_time": "2025-04-23T06:44:51.744723Z"
}
},
"cell_type": "code",
"source": "import pandas as pd",
"id": "ca151ea5138a6483",
"outputs": [],
"execution_count": 1
},
{
"metadata": {
"ExecuteTime": {
"end_time": "2025-04-18T02:17:28.463954Z",
"start_time": "2025-04-18T02:17:28.440605Z"
}
},
"cell_type": "code",
"source": [
"car = pd.read_csv('./data/second_cars_info.csv',encoding='gbk')\n",
"car.head(5)"
],
"id": "cafa1492fc572672",
"outputs": [
{
"data": {
"text/plain": [
" Brand Name Boarding_time Km Discharge排放标准 \\\n",
"0 奥迪 奥迪A6L 2006款 2.4 CVT 舒适型 2006年8月 9.00万公里 国3 \n",
"1 奥迪 奥迪A6L 2007款 2.4 CVT 舒适型 2007年1月 8.00万公里 国4 \n",
"2 奥迪 奥迪A6L 2004款 2.4L 技术领先型 2005年5月 15.00万公里 国2 \n",
"3 奥迪 奥迪A8L 2013款 45 TFSI quattro舒适型 2013年10月 4.80万公里 欧4 \n",
"4 奥迪 奥迪A6L 2014款 30 FSI 豪华型 2014年9月 0.81万公里 国4,国5 \n",
"\n",
" Sec_price New_price \n",
"0 6.90 50.89万 \n",
"1 8.88 50.89万 \n",
"2 3.82 54.24万 \n",
"3 44.80 101.06万 \n",
"4 33.19 54.99万 "
],
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Brand</th>\n",
" <th>Name</th>\n",
" <th>Boarding_time</th>\n",
" <th>Km</th>\n",
" <th>Discharge排放标准</th>\n",
" <th>Sec_price</th>\n",
" <th>New_price</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>奥迪</td>\n",
" <td>奥迪A6L 2006款 2.4 CVT 舒适型</td>\n",
" <td>2006年8月</td>\n",
" <td>9.00万公里</td>\n",
" <td>国3</td>\n",
" <td>6.90</td>\n",
" <td>50.89万</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>奥迪</td>\n",
" <td>奥迪A6L 2007款 2.4 CVT 舒适型</td>\n",
" <td>2007年1月</td>\n",
" <td>8.00万公里</td>\n",
" <td>国4</td>\n",
" <td>8.88</td>\n",
" <td>50.89万</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>奥迪</td>\n",
" <td>奥迪A6L 2004款 2.4L 技术领先型</td>\n",
" <td>2005年5月</td>\n",
" <td>15.00万公里</td>\n",
" <td>国2</td>\n",
" <td>3.82</td>\n",
" <td>54.24万</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>奥迪</td>\n",
" <td>奥迪A8L 2013款 45 TFSI quattro舒适型</td>\n",
" <td>2013年10月</td>\n",
" <td>4.80万公里</td>\n",
" <td>欧4</td>\n",
" <td>44.80</td>\n",
" <td>101.06万</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>奥迪</td>\n",
" <td>奥迪A6L 2014款 30 FSI 豪华型</td>\n",
" <td>2014年9月</td>\n",
" <td>0.81万公里</td>\n",
" <td>国4,国5</td>\n",
" <td>33.19</td>\n",
" <td>54.99万</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
]
},
"execution_count": 82,
"metadata": {},
"output_type": "execute_result"
}
],
"execution_count": 82
},
{
"metadata": {
"ExecuteTime": {
"end_time": "2025-04-18T02:17:28.513253Z",
"start_time": "2025-04-18T02:17:28.491887Z"
}
},
"cell_type": "code",
"source": [
"from decimal import Decimal\n",
"car[\"Km\"] = car[\"Km\"].str.extract(\"(\\d+\\.?\\d+)\",expand = True)\n",
"car[\"New_price\"] = car[\"New_price\"].str.extract(\"(\\d+\\.?\\d+)\",expand = True)\n",
"car[\"New_price\"] = car[\"New_price\"].apply(lambda x : Decimal(x) * 10000)\n",
"# car[\"Sec_price\"] = car[\"Sec_price\"].apply(lambda x : Decimal(str(x)) * 10000)\n",
"# car[\"Km\"] = car[\"Km\"].apply(lambda x : Decimal(str(x)) * 10000)\n",
"car.head(5)"
],
"id": "1094ed7ec64fd6d3",
"outputs": [
{
"data": {
"text/plain": [
" Brand Name Boarding_time Km Discharge排放标准 \\\n",
"0 奥迪 奥迪A6L 2006款 2.4 CVT 舒适型 2006年8月 9.00 国3 \n",
"1 奥迪 奥迪A6L 2007款 2.4 CVT 舒适型 2007年1月 8.00 国4 \n",
"2 奥迪 奥迪A6L 2004款 2.4L 技术领先型 2005年5月 15.00 国2 \n",
"3 奥迪 奥迪A8L 2013款 45 TFSI quattro舒适型 2013年10月 4.80 欧4 \n",
"4 奥迪 奥迪A6L 2014款 30 FSI 豪华型 2014年9月 0.81 国4,国5 \n",
"\n",
" Sec_price New_price \n",
"0 6.90 508900.00 \n",
"1 8.88 508900.00 \n",
"2 3.82 542400.00 \n",
"3 44.80 1010600.00 \n",
"4 33.19 549900.00 "
],
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Brand</th>\n",
" <th>Name</th>\n",
" <th>Boarding_time</th>\n",
" <th>Km</th>\n",
" <th>Discharge排放标准</th>\n",
" <th>Sec_price</th>\n",
" <th>New_price</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>奥迪</td>\n",
" <td>奥迪A6L 2006款 2.4 CVT 舒适型</td>\n",
" <td>2006年8月</td>\n",
" <td>9.00</td>\n",
" <td>国3</td>\n",
" <td>6.90</td>\n",
" <td>508900.00</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>奥迪</td>\n",
" <td>奥迪A6L 2007款 2.4 CVT 舒适型</td>\n",
" <td>2007年1月</td>\n",
" <td>8.00</td>\n",
" <td>国4</td>\n",
" <td>8.88</td>\n",
" <td>508900.00</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>奥迪</td>\n",
" <td>奥迪A6L 2004款 2.4L 技术领先型</td>\n",
" <td>2005年5月</td>\n",
" <td>15.00</td>\n",
" <td>国2</td>\n",
" <td>3.82</td>\n",
" <td>542400.00</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>奥迪</td>\n",
" <td>奥迪A8L 2013款 45 TFSI quattro舒适型</td>\n",
" <td>2013年10月</td>\n",
" <td>4.80</td>\n",
" <td>欧4</td>\n",
" <td>44.80</td>\n",
" <td>1010600.00</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>奥迪</td>\n",
" <td>奥迪A6L 2014款 30 FSI 豪华型</td>\n",
" <td>2014年9月</td>\n",
" <td>0.81</td>\n",
" <td>国4,国5</td>\n",
" <td>33.19</td>\n",
" <td>549900.00</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
]
},
"execution_count": 83,
"metadata": {},
"output_type": "execute_result"
}
],
"execution_count": 83
},
{
"metadata": {
"ExecuteTime": {
"end_time": "2025-04-18T02:17:28.568207Z",
"start_time": "2025-04-18T02:17:28.555681Z"
}
},
"cell_type": "code",
"source": [
"car['Boarding_time'] = pd.to_datetime(car['Boarding_time'].str.replace('年', '-').str.replace('月', ''), errors='coerce', format='%Y-%m')\n",
"car.head(3)"
],
"id": "2df80c752148dcd1",
"outputs": [
{
"data": {
"text/plain": [
" Brand Name Boarding_time Km Discharge排放标准 \\\n",
"0 奥迪 奥迪A6L 2006款 2.4 CVT 舒适型 2006-08-01 9.00 国3 \n",
"1 奥迪 奥迪A6L 2007款 2.4 CVT 舒适型 2007-01-01 8.00 国4 \n",
"2 奥迪 奥迪A6L 2004款 2.4L 技术领先型 2005-05-01 15.00 国2 \n",
"\n",
" Sec_price New_price \n",
"0 6.90 508900.00 \n",
"1 8.88 508900.00 \n",
"2 3.82 542400.00 "
],
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Brand</th>\n",
" <th>Name</th>\n",
" <th>Boarding_time</th>\n",
" <th>Km</th>\n",
" <th>Discharge排放标准</th>\n",
" <th>Sec_price</th>\n",
" <th>New_price</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>奥迪</td>\n",
" <td>奥迪A6L 2006款 2.4 CVT 舒适型</td>\n",
" <td>2006-08-01</td>\n",
" <td>9.00</td>\n",
" <td>国3</td>\n",
" <td>6.90</td>\n",
" <td>508900.00</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>奥迪</td>\n",
" <td>奥迪A6L 2007款 2.4 CVT 舒适型</td>\n",
" <td>2007-01-01</td>\n",
" <td>8.00</td>\n",
" <td>国4</td>\n",
" <td>8.88</td>\n",
" <td>508900.00</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>奥迪</td>\n",
" <td>奥迪A6L 2004款 2.4L 技术领先型</td>\n",
" <td>2005-05-01</td>\n",
" <td>15.00</td>\n",
" <td>国2</td>\n",
" <td>3.82</td>\n",
" <td>542400.00</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
]
},
"execution_count": 84,
"metadata": {},
"output_type": "execute_result"
}
],
"execution_count": 84
},
{
"metadata": {
"ExecuteTime": {
"end_time": "2025-04-18T02:17:28.626329Z",
"start_time": "2025-04-18T02:17:28.622360Z"
}
},
"cell_type": "code",
"source": [
"today = pd.Timestamp('today')\n",
"car['Year'] = today.year - car['Boarding_time'].dt.year\n",
"car['Month'] = today.month - car['Boarding_time'].dt.month\n",
"car['Year'] = car['Year'] + car['Month'] / 12"
],
"id": "adb1e9029cf50440",
"outputs": [],
"execution_count": 85
},
{
"metadata": {
"ExecuteTime": {
"end_time": "2025-04-18T02:17:28.693439Z",
"start_time": "2025-04-18T02:17:28.689606Z"
}
},
"cell_type": "code",
"source": [
"# 1、车辆价格分布情况\n",
"car['Sec_price'].describe()"
],
"id": "192ca8d230bba52c",
"outputs": [
{
"data": {
"text/plain": [
"count 11281.000000\n",
"mean 26.897567\n",
"std 55.451814\n",
"min 0.650000\n",
"25% 5.200000\n",
"50% 10.490000\n",
"75% 24.800000\n",
"max 808.000000\n",
"Name: Sec_price, dtype: float64"
]
},
"execution_count": 86,
"metadata": {},
"output_type": "execute_result"
}
],
"execution_count": 86
},
{
"metadata": {
"ExecuteTime": {
"end_time": "2025-04-18T02:17:28.759802Z",
"start_time": "2025-04-18T02:17:28.755785Z"
}
},
"cell_type": "code",
"source": [
"# 2、车辆销量品牌分布\n",
"car['Brand'].value_counts()"
],
"id": "84cd0ac0f5397e98",
"outputs": [
{
"data": {
"text/plain": [
"别克 1350\n",
"大众 991\n",
"奔驰 895\n",
"宝马 773\n",
"奥迪 758\n",
" ... \n",
"东风风光 1\n",
"昌河 1\n",
"北汽制造 1\n",
"北京 1\n",
"中欧房车 1\n",
"Name: Brand, Length: 104, dtype: int64"
]
},
"execution_count": 87,
"metadata": {},
"output_type": "execute_result"
}
],
"execution_count": 87
},
{
"metadata": {
"ExecuteTime": {
"end_time": "2025-04-18T02:17:28.829496Z",
"start_time": "2025-04-18T02:17:28.826138Z"
}
},
"cell_type": "code",
"source": [
"# 3、排放标准分析\n",
"car['Discharge排放标准'].value_counts()"
],
"id": "abfa9e35e2c0e57b",
"outputs": [
{
"data": {
"text/plain": [
"国4 4300\n",
"欧4 1898\n",
"欧5 1201\n",
"国4,国5 848\n",
"国3 798\n",
"国5 683\n",
"欧3 292\n",
"-- 276\n",
"国2 241\n",
"国4,京5 223\n",
"国3,OBD 119\n",
"OBD 90\n",
"国4,OBD 63\n",
"欧4,OBD 62\n",
"OBD,国5 38\n",
"欧6 36\n",
"国4,OBD,国5 31\n",
"国5,京5 22\n",
"欧5,OBD 9\n",
"欧4,欧5 9\n",
"欧5,国4 7\n",
"欧4,国3 7\n",
"国4,OBD,京5 6\n",
"欧4,国4 6\n",
"欧4,国4,OBD 5\n",
"欧3,欧4 2\n",
"欧5,国5 2\n",
"国4,国5,京5 1\n",
"欧1 1\n",
"欧2 1\n",
"京5 1\n",
"国3,国4 1\n",
"欧4,-- 1\n",
"欧5,国4,国5 1\n",
"Name: Discharge排放标准, dtype: int64"
]
},
"execution_count": 88,
"metadata": {},
"output_type": "execute_result"
}
],
"execution_count": 88
},
{
"metadata": {
"ExecuteTime": {
"end_time": "2025-04-18T02:17:28.890889Z",
"start_time": "2025-04-18T02:17:28.886821Z"
}
},
"cell_type": "code",
"source": [
"# 4、车龄分析\n",
"car['Year'].describe()"
],
"id": "93126f910d7182c6",
"outputs": [
{
"data": {
"text/plain": [
"count 11188.000000\n",
"mean 13.123592\n",
"std 2.991405\n",
"min 7.500000\n",
"25% 10.750000\n",
"50% 13.166667\n",
"75% 15.083333\n",
"max 27.333333\n",
"Name: Year, dtype: float64"
]
},
"execution_count": 89,
"metadata": {},
"output_type": "execute_result"
}
],
"execution_count": 89
},
{
"metadata": {
"ExecuteTime": {
"end_time": "2025-04-18T02:17:28.960584Z",
"start_time": "2025-04-18T02:17:28.955583Z"
}
},
"cell_type": "code",
"source": [
"# 5、里程分析\n",
"car['Km'].describe()"
],
"id": "9a5d106b4e15e8a2",
"outputs": [
{
"data": {
"text/plain": [
"count 11184\n",
"unique 968\n",
"top 6.00\n",
"freq 485\n",
"Name: Km, dtype: object"
]
},
"execution_count": 90,
"metadata": {},
"output_type": "execute_result"
}
],
"execution_count": 90
},
{
"metadata": {
"ExecuteTime": {
"end_time": "2025-04-18T02:17:29.031125Z",
"start_time": "2025-04-18T02:17:29.024995Z"
}
},
"cell_type": "code",
"source": [
"# 6、折旧价格分析\n",
"# car = car.dropna(subset=['Km'])\n",
"car[['Km', 'Sec_price']].corr()"
],
"id": "52035886c7842d2f",
"outputs": [
{
"data": {
"text/plain": [
" Sec_price\n",
"Sec_price 1.0"
],
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Sec_price</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>Sec_price</th>\n",
" <td>1.0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
]
},
"execution_count": 91,
"metadata": {},
"output_type": "execute_result"
}
],
"execution_count": 91
},
{
"metadata": {
"ExecuteTime": {
"end_time": "2025-04-18T02:23:06.001261Z",
"start_time": "2025-04-18T02:23:05.987085Z"
}
},
"cell_type": "code",
"source": [
"# 7、不同品牌新车平均价格对比\n",
"car[['Brand', 'New_price']].groupby('Brand').mean()"
],
"id": "568eaf05460ebb68",
"outputs": [
{
"data": {
"text/plain": [
" New_price\n",
"Brand \n",
"DS 2.644188e+05\n",
"GMC 1.423178e+06\n",
"Jeep 4.342455e+05\n",
"MINI 3.076827e+05\n",
"WEY 1.930000e+05\n",
"... ...\n",
"雪佛兰 1.564546e+05\n",
"雪铁龙 1.655019e+05\n",
"雷克萨斯 7.538173e+05\n",
"雷诺 2.770526e+05\n",
"马自达 2.170586e+05\n",
"\n",
"[104 rows x 1 columns]"
],
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>New_price</th>\n",
" </tr>\n",
" <tr>\n",
" <th>Brand</th>\n",
" <th></th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>DS</th>\n",
" <td>2.644188e+05</td>\n",
" </tr>\n",
" <tr>\n",
" <th>GMC</th>\n",
" <td>1.423178e+06</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Jeep</th>\n",
" <td>4.342455e+05</td>\n",
" </tr>\n",
" <tr>\n",
" <th>MINI</th>\n",
" <td>3.076827e+05</td>\n",
" </tr>\n",
" <tr>\n",
" <th>WEY</th>\n",
" <td>1.930000e+05</td>\n",
" </tr>\n",
" <tr>\n",
" <th>...</th>\n",
" <td>...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>雪佛兰</th>\n",
" <td>1.564546e+05</td>\n",
" </tr>\n",
" <tr>\n",
" <th>雪铁龙</th>\n",
" <td>1.655019e+05</td>\n",
" </tr>\n",
" <tr>\n",
" <th>雷克萨斯</th>\n",
" <td>7.538173e+05</td>\n",
" </tr>\n",
" <tr>\n",
" <th>雷诺</th>\n",
" <td>2.770526e+05</td>\n",
" </tr>\n",
" <tr>\n",
" <th>马自达</th>\n",
" <td>2.170586e+05</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>104 rows × 1 columns</p>\n",
"</div>"
]
},
"execution_count": 96,
"metadata": {},
"output_type": "execute_result"
}
],
"execution_count": 96
},
{
"metadata": {
"ExecuteTime": {
"end_time": "2025-04-18T02:25:53.211176Z",
"start_time": "2025-04-18T02:25:53.179478Z"
}
},
"cell_type": "code",
"source": [
"# 8、排放标准与行驶里程的关系\n",
"car['Km'] = pd.to_numeric(car['Km'], errors='coerce')\n",
"car.groupby('Discharge排放标准')['Km'].mean()"
],
"id": "4af30a35353b2754",
"outputs": [
{
"data": {
"text/plain": [
"Discharge排放标准\n",
"-- 6.302677\n",
"OBD 8.320222\n",
"OBD,国5 3.307105\n",
"京5 2.000000\n",
"国2 11.470539\n",
"国3 8.524411\n",
"国3,OBD 7.691681\n",
"国3,国4 5.000000\n",
"国4 7.075801\n",
"国4,OBD 5.169841\n",
"国4,OBD,京5 5.533333\n",
"国4,OBD,国5 4.262258\n",
"国4,京5 4.808879\n",
"国4,国5 4.026185\n",
"国4,国5,京5 3.400000\n",
"国5 2.302224\n",
"国5,京5 3.365455\n",
"欧1 8.000000\n",
"欧2 12.000000\n",
"欧3 9.064828\n",
"欧3,欧4 8.000000\n",
"欧4 6.729597\n",
"欧4,-- 7.500000\n",
"欧4,OBD 5.134426\n",
"欧4,国3 8.914286\n",
"欧4,国4 6.133333\n",
"欧4,国4,OBD 7.460000\n",
"欧4,欧5 4.120000\n",
"欧5 3.364559\n",
"欧5,OBD 4.911111\n",
"欧5,国4 4.382857\n",
"欧5,国4,国5 7.000000\n",
"欧5,国5 0.650000\n",
"欧6 1.073714\n",
"Name: Km, dtype: float64"
]
},
"execution_count": 99,
"metadata": {},
"output_type": "execute_result"
}
],
"execution_count": 99
},
{
"metadata": {
"ExecuteTime": {
"end_time": "2025-04-18T02:26:08.841815Z",
"start_time": "2025-04-18T02:26:08.835149Z"
}
},
"cell_type": "code",
"source": [
"# 9、车龄与二手车价格的相关性\n",
"car[['Year', 'Sec_price']].corr()"
],
"id": "ab1c177ba107b9bc",
"outputs": [
{
"data": {
"text/plain": [
" Year Sec_price\n",
"Year 1.00000 -0.30768\n",
"Sec_price -0.30768 1.00000"
],
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Year</th>\n",
" <th>Sec_price</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>Year</th>\n",
" <td>1.00000</td>\n",
" <td>-0.30768</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Sec_price</th>\n",
" <td>-0.30768</td>\n",
" <td>1.00000</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
]
},
"execution_count": 100,
"metadata": {},
"output_type": "execute_result"
}
],
"execution_count": 100
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 5
}